Reactive Internet Programming

State Chart XML in Action

Franck Barbier

University of Pau, France

ACM Books #10

Contents

Chapter 1

Chapter 2

Chapter 3

i'refntr xiii
Advice for the Reader w
Vocabulary \\
Stylistic Conventions \\
Introduction 1
Software Engineering in the Internet Era 2
Expected Benefits of Model-driven Software Development
Programming with Events and States
Model Execution or Interpretation
Architectural Issues of Internet Programming 6
Event and State-based Modeling and Programming 1>
States are Universal and Everywhere
States are Abstract and Discrete 14
"Event" as Dual Notion of State i
Harel's Statecharts I«
Discovering State Chart XML 20
Statechart Execution 2
Applying State Chart XML u
Startup of Barbados Crisis Management System ».}
Business Case: "Route Negotiation" w
Timing Constraints 1○
Introduction to the Run-to-completion Execution Mode s
Variations on Modeling: The Power of Statecharts Hi
Evaluation !S

Chapter 4	Prog	ramming State Chart XML Models >1
	1.1	Programming "My device" →2
	1.2	Setup of Entry and Exit Actions
	1. i	Setup of Activities b ^l)
	1. i	Sending Events Internally (>')
	1.7	Action Parameters 70
	if.	State Machine Kick-off 72
	I. r	State Machine Shutdown 71
	!.n	State Machine Tracing 77.
	I^1)	Transition Programming 77
	1. i ii	Guard Programming 77
	1.i i	Event Processing 74
	I i >	Communication Programming H0
Chapter 5	Exec	eution Semantics 87>
•	5. i	Example of Execution Semantics Potential Defects Sp
	"1.2	Run-to-Completion Cycles X7
		Action and Activity Execution Sequencing k(i
	7.1	Execution Sequencing and Orthogonality 1)0
		Execution Sequencing and Nesting <)»
	>f	Event Consumption Principle MI
	7	Deferred Events 41
	⟨ S	Transition Conflicts <a>."
Chapters	Adva	anced Programming with PauWare engine 107
	f>.i	Completion Transitions 107
	i.'	Timer Services 112
	(> 7	State and Event Naming no
	!. i	Single Nesting 120
	i 7	The Notion of "internal transition" in State Chart XML 120
	i.i'	Allowed Events at Large 121

Unicast vs. Multicast Calls/Communications 120 i'Cached Transitions vs. Contextual Transitions 12K

Data Consistency Checking through State Invariants 1.i.i

i.7)

◇. Hi History Facilities 1 57 ivii Concurrency Ili)

Chapter 7	Programming the "Internet of Things" i 11		
	Characterization of "Internet of Things" Applications		
	~ 2 Application Requirements (Home Automation System) 1 1		
	Analysis i.>7		
	Design		
	Implementation Issues !(>(»		
Chapter 8	Programming Web Enterprise Applications 181		
	k.1 Characterization of Web Enterprise Applications is i		
	8.2 Application Requirements (Railcar Control System) 1«S'>		
	s. i Analysis 186		
	;>.i Design i¹)7		
	s · Implementation Issues ¹()v>		
Chapter 9	Software Component Management 201)		
	b Dynamical (Re)configuration 2M»		
	Extended Management Framework 2il		
	>»i Pushing State Machine Data Outside 212		
Appendix A	Internal Structure of PauWare Engine 21 b		
	\ i Organization of a State Machine's States in Memory 2ir,		
	\.2 Organization of a State Machine's Transitions in Memory 116		
Appendix B	Acronyms 219		
Appendix C	Downloadable Software Resources 221		

Keferencvs 22.5

Author's 1)itu:;ra|)h\ 22.1