AUTOMATA, LANGUAGES, DEVELOPMENT

Edited by

ARISTID LINDENMAYER

Theoretical Biology Group, University of Utrecht

and

GRZEGORZ ROZENBERG

Department of Mathematics, University of Antwerp, U.I.A., Wilrijk and

Institute of Mathematics, University of Utrecht

1976

NORTH-HOLLAND PUBLISHING COMPANY AMSTERDAM • NEW YORK • OXFORD

TABLE OF CONTENTS

	INTRODUCTION	v
I.	MATHEMATICAL AND COMPUTER MODELS OF DEVELOPMENT	
	A. Bell, Bangor, Wales. Computerized vegetative mobility in rhizomatous plants.	3
	D.A. Ede and O.K. Wilby, Glasgow, Scotland. Analysis of cellular activities in the developing limb bud system	15
	O.K. Wilby and D.A. Ede, Glasgow, Scotland. Computer simulation of vertebrate limb development - The effect	
*	of cell division control patterns. R.O. Erickson, Philadelphia, Pennsylvania, U.S.A.	25
	Growth in two dimensions - Descriptive and theoretical studies. D. Frijters and A. Lindenmayer, Utrecht, Netherlands.	39
*	Developmental descriptions of branching patterns with paracladial relationships. C. Harte, Köln, Germany.	57
	Measurement of growth correlation and the genetic control of growth	75
	A. Ortmann and C. Harte, Köln, Germany. Development of the pattern of veins in the leaf of Antirrhinum majus L.	89
	J.H. Lewis, London, England. Rules for building the chick wing: Discrete and continuous aspects of morphogenesis.	97
	H.B. Lück and J. Lück, Marseille, France. Cell number and cell size in filamentous organisms in relation to ancestrally and positionally dependent generation times.	109
*	H.M. Martinez, San Francisco, California, U.S.A. Automaton-theoretic models of cellular development: A survey	125
	C.P. Raven and J.J. Bezem, Utrecht, Netherlands. Analysis of pattern formation in gastropods by means of computer simulation.	139
	J.J. Bezem and C.P. Raven, Utrecht, Netherlands. Some algorithms used in the simulation of embryonic development.	147
II.	THEORY OF L SYSTEMS	
	J. Berstel, Paris, France and M. Nielsen, Aarhus, Denmark. The growth range equivalence problem for DOL systems is decidable. A: Ehrenfeucht, Boulder, Colorado, U.S.A. and G. Rozenberg, Antwerp,	161
	Belgium and Utrecht, Netherlands. On inverse homomorphic images of deterministic ETOL languages. A: Ehrenfeucht; Boulder, Colorado, U.S.A. and G. Rozenberg, Antwerp,	179
	Belgium and Utrecht, Netherlands. On O-determined EOL languages.	191
	P: Jöhänäen; Cöpenhagen, Denmark. Cömmutätör calculus and L systems.	203
	H: Jürgensen, Kiel, Germany. Probabilistic L systems.	211
	J. Karhumaki, Turku, Finland. On length sets of informationless L systems.	227
	J. Opatrný and K. Culik, Waterloo, Ontario, Canada. Time complexity of recognition and parsing of EOL languages.	243

H.A. Maurer, Karlsruhe, Germany and D. Wood, Hamilton, Ontario, Canada.	
Szilard languages of L-systems.	251
K. Ruohonen, Turku, Finland.	
A symmetric D2L model for string regeneration.	263
* A. Salomaa, Aarhus, Denmark. Growth functions of Lindenmayer systems: Some new approaches.	271
W.J. Savitch, San Diego, California, U.S.A.	2/1
Computational complexity of developmental programs.	283
W.J. Savitch, San Diego, California, U.S.A.	
Ambiguous developmental plans.	293
H.J. Shyr and G. Thierrin, London, Ontario, Canada.	
Preorder relations associated with developmental systems and languages.	301
M. Soittola, Turku, Finland.	501
On DOL synthesis problem.	313
J. van Leeuwen, Amsterdam, Netherlands.	
A study of complexity in hyper-algebraic families.	323
P.M.B. Vitányi, Amsterdam, Netherlands.	
Digraphs associated with DOL systems	335
L systems problem book '75.	347
G. Rozenberg, Antwerp, Belgium and Utrecht, Netherlands. Bibliography of L systems.	351
bioliography of b Systems.	-
III. CELLULAR AUTOMATA THEORY	
U. Golze, Hannover, Germany.	
Differences between 1- and 2-dimensional cell spaces.	369
J. Holland, Ann Arbor, Michigan, U.S.A.	
Studies of the spontaneous emergence of self-replicating	
systems using cellular automata and formal grammars.	385
* A.R. Smith, Old Westbury, New York, U.S.A. Introduction to and survey of polyautomata theory.	405
introduction to and survey of polyautomaca theory.	403
IV. PARALLEL GRAPH GENERATING AND RELATED SYSTEMS	
H. Ehrig and HJ. Kreowski, Berlin, Germany.	425
Parallel graph grammars. H. Ehrig, Berlin, Germany and G. Rozenberg, Antwerp, Belgium	.423
and Utrecht, Netherlands.	
Some difinitional suggestions for parallel graph grammars.	443
B.H. Mayoh, Aarhus, Denmark.	
Another model for the development of multidimensional organisms.	469
M. Nagl, Erlangen, Germany.	
On a generalization of Lindenmayer-systems to labelled graphs.	487
* A. Paz, Haifa, Israel. Multidimensional parallel rewriting systems.	509
* A. Rosenfeld, College Park, Maryland, U.S.A.	209
Array and web grammars: An overview.	517