W.T. Ingram • William S. Mahavier

Inverse Limits

From Continua to Chaos

Contents

.

1	Inverse Limits on Intervals		
	1.1	Basic properties of inverse limits on the interval $[0, 1]$	1
	1.2	Examples and remainders of topological rays	6
	1.3	Inverse limits on [0, 1] with only one bonding map	13
	1.4	Period three implies indecomposability	19
	1.5	Inverse limits with only one map of an interval	22
	1.6	Inverse limits on intervals with sequences of maps	26
	1.7	Inverse limits with unimodal bonding maps	27
	1.8	Logistic maps and their inverse limits	31
	1.9	The piecewise linear family of unimodal maps f_{ab}	48
	1.10	The tent family	52
	1.11	Other families of mappings	55
		1.11.1 The family \mathcal{F}	55
		1.11.2 The family \mathcal{G}	56
		1.11.3 Markov maps	57
		1.11.4 Permutation maps	58
	1.12	Characterization of inverse limits on $[0,1]$ as chainable	
		continua	59
	1.13	An inverse limit homeomorphic to a $\sin(1/x)$ -curve	67
Re	feren	ces	73
2	Inve	erse Limits in a General Setting	75
	2.1	Introduction	75
	2.2	Definitions and a basic theorem	76
	2.3	Graphs of upper semi-continuous functions	78
	2.4	Consistent systems	79
	2.5	Compact inverse limits	80
	2.6	Connected inverse limits	83
		2.6.1 Systems in which all of the bonding functions are	
		mappings	85

		2.6.2 Systems in which the directed set is totally ordered	86
	0.7	$\Sigma_{1,0,2}$ Systems in which the uncertain set is totally ordered	00
	2.1	Examples in the special case that each factor space is $[0, 1]$.	104
	2.8	Mapping theorems	104
	2.9	Upper semi-continuous functions that are unions of functions	111
	2.10	Inverse limit systems with mappings	115
		2.10.1 A basis for the topology	115
		2.10.2 Closed subsets	115
		2.10.3 Closed subsets of a system with upper semi-continuous	
		bonding functions	117
		2.10.4 Intersections of closed subsets of the inverse limit	117
		2.10.5 The subsequence theorem	119
		2.10.6 Other induced homeomorphisms	120
		2.10.7 Inverse limits as sequential limiting sets	121
		2 10 8 Inverse limits as intersections of closed sets	122
	9 11	Inverse limits with metric factor spaces	122
	2.11	Dimonsion	124
	2.12		121
Ref	eren	263	129
1001			
3	Inve	rse Limits in Continuum Theory	131
	3.1	Introduction	131
	3.2	Indecomposability, atriodicity, and unicoherence	131
		3.2.1 Indecomposability	132
		3.2.2 Triods and atriodicity	133
		3.2.2 Inicoherence	134
		3.2.4 Irroducibility	135
	<u> </u>	Monotone hending mana	137
	ე.ე ე∡	Investigation and indecompose bility	122
	3.4	infeducionity and indecomposability	149
	3.5	Ulosed subsets	144
		3.5.1 The full projection property	144
	3.6	Indecomposability of inverse limits with upper semi-	1.10
		continuous bonding functions	140
	3.7	Continua that cannot be obtained with one bonding function	147
	3.8	Additional topics	148
		3.8.1 Span	149
		3.8.2 Property of Kelley	150
		3.8.3 Fixed point property	151
		3.8.4 Hyperspaces	152
-	^		150
Re	teren	ces	153
4	Bro	wn's Approximation Theorem	155
т	<u>4</u> 1	Introduction	155
	4.1	Brown's theorem	155
	4.4	An application of Brown's theorem	161
	4.5	An application of brown's theorem	101

References					
5 A	Арр	endix: An Introduction to the Hilbert Cube 167			
5	5.1	Introduction			
63	5.2	A brief introduction to topology 167			
5	5.3	The Hilbert cube			
		5.3.1 The metric topology for Q			
		5.3.2 The product topology for Q			
		5.3.3 The metric topology and the product topology for Q			
		are identical			
5	5.4	A countable basis for the topology of Q			
63	5.5	\mathcal{Q} is compact			
51	5.6	\mathcal{Q} is connected			
5	5.7	Consequences of compactness 177			
5	5.8	Continuity			
нJ	5.9	Arcs			
5	5.10	Boundary bumping 180			
Refe	rene	ces			
Bibli	iogr	aphy 189			
Index					