Interpolation of Operators

Colin Bennett
Robert Sharpley

Department of Mathematics
University of South Carolina
Columbia, South Carolina
Contents

Preface xiii

Chapter 1. Banach Function Spaces 1

1. Banach Function Spaces 2
 Banach function norms \(p \); Banach function spaces \(X \); Fatou’s lemma; the Riesz-Fischer property.

2. The Associate Space 7
 The associate norm \(p' \); the associate space \(X' \); Hölder’s inequality; the Lorentz-Luxemburg theorem; the dual space \(X^* \).

3. Absolute Continuity of the Norm 13
 Functions of absolutely continuous norm; the subspace \(X_a \) of functions of absolutely continuous norm; the closure \(X_b \) of the bounded functions supported in sets of finite measure; comparison of \(X_a \), \(X_b \), and \(X \).

4. Duality and Reflexivity 19
 The associate space and duality; the dual of \(X_a \); conditions for coincidence of \(X' \) and \(X^* \); reflexivity and absolute continuity of the norm.

5. Separability 24
 \(\sigma(X, X') \)-completeness of Banach function spaces \(X \); separable measure spaces; separability of Banach function spaces; separability and reflexivity.

Exercises and Furthwer Results for Chapter 1 30
Notes for Chapter 1 33

vii
Chapter 2. Rearrangement-Invariant Banach Function Spaces

1. Distribution Functions and Decreasing Rearrangements
 - The distribution function μ_f; equimeasurable functions; the decreasing rearrangement f^*; the L^p-norm in terms of μ_f and f^*.

2. An Inequality of Hardy and Littlewood
 - The Hardy-Littlewood inequality; decreasing rearrangements of products; resonant and strongly resonant measure spaces.

3. An Elementary Maximal Function
 - The maximal function f^{**}; subadditivity of $f \to f^{**}$; the method of retracts; the Hardy-Littlewood-Pólya relation; Hardy's lemma; conditional expectations.

4. Rearrangement-Invariant Spaces
 - Rearrangement-invariant Banach function spaces; rearrangement-invariance of the associate space; order structure and the Hardy-Littlewood-Pólya relation; conditional expectations; the Luxemburg representation theorem.

5. The Fundamental Function
 - The fundamental function; duality and separability of rearrangement-invariant spaces; the Lorentz spaces $\Lambda(X)$ and $M(X)$; comparison of X, $\Lambda(X)$, and $M(X)$.

6. The Spaces $L^1 + L^\infty$ and $L^1 \cap L^\infty$
 - The norms in $L^1 + L^\infty$ and $L^1 \cap L^\infty$; Hölder's inequality; mutual associativity; extremal properties.

7. Measure-Preserving Transformations
 - Measure-preserving transformations; Lorentz’ lemma; Ryff’s theorem; recovery of f from f^* by a measure-preserving transformation.

Exercises and Further Results for Chapter 2

Notes for Chapter 2

Chapter 3. Interpolation of Operators on Rearrangement-Invariant Spaces

1. Interpolation Spaces
 - Compatible couples; the spaces $X_0 + X_1$ and $X_0 \cap X_1$; admissible operators; interpolation pairs; interpolation spaces.
2. Interpolation Between L^1 and L^∞
Admissible operators and the Hardy-Littlewood-Pólya relation; substochastic operators; the Hardy-Littlewood-Pólya theorem on substochastic matrices; the Calderón-Ryff theorem; interpolation spaces between L^1 and L^∞.

3. The Hardy-Littlewood Maximal Operator
The Hardy-Littlewood maximal operator M; a weak-type estimate; Lebesgue's differentiation theorem; equivalence of $(Mf)^*$ and f^{**}; Hardy's inequalities; the Hardy-Littlewood maximal theorem.

4. The Hilbert Transform
The Hilbert transform H; the maximal Hilbert transform \mathcal{H}; the Loomis lemmas; the Stein-Weiss lemma; weak-type estimates for H and \mathcal{H}; existence of the Hilbert transform; the M. Riesz theorem.

5. Operators of Joint Weak Type $(p_0, q_0; p_1, q_1)$
The Calderón operator S_σ; operators of joint weak type $(p_0, q_0; p_1, q_1)$; Calderón's theorem; indices of rearrangement-invariant spaces; Boyd's theorem; the Hardy-Littlewood maximal operator and the Hilbert transform on rearrangement-invariant spaces.

6. Norm-Convergence of Fourier Series
Fourier series; the conjugate-function operator; a.e. convergence of the principal-value integral; the conjugate-function operator as a multiplier; norm-convergence of Fourier series in rearrangement-invariant spaces.

7. Theorems of Lorentz and Shimogaki
Decreasing rearrangements and differences of functions; decomposition with respect to the Hardy-Littlewood-Pólya relation.

Exercises and Further Results for Chapter 3
174
Notes for Chapter 3
179

Chapter 4. The Classical Interpolation Theorems
1. The Riesz Convexity Theorem
Operators of strong type (p, q); an interpolation theorem for positive integral operators; bilinear forms; the M. Riesz convexity theorem.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>The Riesz-Thorin Convexity Theorem</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>The Hadamard three-lines theorem; the Riesz-Thorin convexity theorem; Young's inequality; the Hausdorff-Young theorem; multilinear interpolation; interpolation of compact operators.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Analytic Families of Operators</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>An extension of the three-lines theorem; analytic families of operators; Stein's interpolation theorem for analytic families; weighted L^p-spaces; Stein's theorem on interpolation with change of measures.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>The Marcinkiewicz Interpolation Theorem</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Lorentz $L^{p,q}$-spaces; operators of weak type (p,q); the Marcinkiewicz interpolation theorem; the Paley-Hausdorff-Young theorem; fractional integral operators; the Hardy-Littlewood-Sobolev theorem of fractional integration.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Restricted Weak Type and A.E. Convergence</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>Nonnegative sublinear operators; operators of restricted weak type (p,q); the Stein-Weiss interpolation theorem for restricted weak-type operators; Moon's theorem; maximal operators; Banach's principle; Stein's theorem on limits of sequences of operators.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>$L\log L$ and L_{\exp}</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>The Zygmund spaces $L\log L$ and L_{\exp}; a limiting case of the Marcinkiewicz interpolation theorem; $L\log L$ and the Hardy-Littlewood maximal operator; theorems of M. Riesz and Zygmund for the conjugate-function operator; Zygmund spaces; Lorentz-Zygmund spaces.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Further Extensions of the Weak-Type Theory</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>The Calderón maximal interpolation operator for rearrangement-invariant spaces; multilinear interpolation of n initial estimates; interpolation of convolution operators.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Orlicz Spaces</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>Young's functions; Orlicz classes; complementary Young's functions; Orlicz spaces; the associate space; the Luxemburg norm; separability; duality.</td>
<td></td>
</tr>
<tr>
<td>Exercises and Further Results for Chapter 4</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>Notes for Chapter 4</td>
<td>286</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5. The K-Method

1. The K-Method
 The Peetre J- and K-functionals; Gagliardo completion; the
 K-functional for \((L^1, L^\infty)\); the \((\theta, q)\)-spaces; the fundamental
 interpolation inequality; an interpolation theorem for \((\theta, q)\)-
 spaces; the k-method.

2. Structure Theorems for the \((\theta, q)\)-spaces
 Holmstedt's formula; the reiteration theorem; the J-method;
 the equivalence theorem; the density theorem; Wolff's
 theorem.

3. Monotone Interpolation Spaces
 Monotone Riesz-Fischer norms; monotone intermediate
 spaces; Cwikel's lemma; divisibility; characterization of
 monotone interpolation spaces.

4. Besov and Sobolev Spaces
 Modulus of smoothness; Besov spaces \(B^p_{\alpha,q}\); Sobolev spaces
 \(W^p_k\); K-functional for \((L^p, W^p_k)\); Marchaud's inequality;
 Sobolev type embedding theorems.

5. Interpolation Between \(W^1_k\) and \(W^\infty_k\)
 The Whitney covering lemma; Taylor polynomials; an
 extension theorem; the K-functional for \((W^1_k, W^\infty_k)\).

6. Re \(H^1\) and BMO
 The nontangential maximal operator; a theorem of Hardy
 and Littlewood; the Hardy space Re \(H^1\); the space BMO of
 functions of bounded mean oscillation; a lemma of Spanne
 and Stein; atomic decomposition; equivalent characteriza-
 tions of Re \(H^1\); the K-functional for \((\text{Re}(H^1), L^\infty)\); Feffer-
 man's duality theorem.

7. BMO and Weak-\(L^\infty\)
 Oscillation of \(f^*\) and \(f\); the John-Nirenberg lemma; weak-
 \(L^\infty\); the rearrangement-invariant hull of BMO; restricted
 weak type \((\infty, \infty)\); an interpolation theorem; the space BLO
 of functions of bounded lower oscillation; the Hardy-Little-
 wood maximal operator on BMO.

8. Interpolation Between \(L^1\) and BMO
 The sharp function; the space BMO(\(\mathbb{R}^n\)); the K-functional
 for \((L^1, \text{BMO})\); interpolation spaces between \(L^1\) and BMO;
 the Hardy-Littlewood maximal operator on BMO(\(\mathbb{R}^n\)).
9. Jones' Solution of $\bar{\partial}f = \mu$
Carleson measures; Jones' constructive solution of $\bar{\partial}f = \mu$.

10. Interpolation Between H^1 and H^∞
The K-functional for (H^1, H^∞); characterization of the interpolation spaces between H^1 and H^∞.

Exercises and Further Results for Chapter 5
Notes for Chapter 5

Appendix A
References
Bibliography
Index

List of Notations