THE STABILITY OF MATTER IN QUANTUM MECHANICS

ELLIOTT H. LIEB AND ROBERT SEIRINGER Princeton University

Contents

	Pre	face		xiii
1	Prologue			1
	1.1	Introd	uction	1
	1.2	Brief	Outline of the Book	5
2	Intr	oductio	on to Elementary Quantum Mechanics and Stability	
	of t	he First	Kind	8
	2.1 A Brief Review of the Connection Between Classical and			
		Quant	tum Mechanics	8
		2.1.1	Hamiltonian Formulation	10
		2.1.2	Magnetic Fields	10
		2.1.3	Relativistic Mechanics	12
		2.1.4	Many-Body Systems	13
		2.1.5	Introduction to Quantum Mechanics	14
		2.1.6	Spin	18
		2.1.7	Units	21
	2.2	2.2 The Idea of Stability		
		2.2.1	Uncertainty Principles: Domination of the Potential	
			Energy by the Kinetic Energy	26
		2.2.2	The Hydrogenic Atom	29
3	Many-Particle Systems and Stability of the Second Kind			31
	3.1	Many	-Body Wave Functions	31
		3.1.1	The Space of Wave Functions	31
		3.1.2	Spin	33
		3.1.3	Bosons and Fermions (The Pauli Exclusion	
			Principle)	35

viii Contents

		3.1.4 Density Matrices	38	
		3.1.5 Reduced Density Matrices	41	
	3.2	Many-Body Hamiltonians	50	
		3.2.1 Many-Body Hamiltonians and Stability: Models with		
		Static Nuclei	50	
		3.2.2 Many-Body Hamiltonians: Models without Static		
		Particles	54	
		3.2.3 Monotonicity in the Nuclear Charges	57	
		3.2.4 Unrestricted Minimizers are Bosonic	58	
4	Lieb-Thirring and Related Inequalities			
	4.1	LT Inequalities: Formulation	62	
		4.1.1 The Semiclassical Approximation	63	
		4.1.2 The LT Inequalities; Non-Relativistic Case	66	
		4.1.3 The LT Inequalities; Relativistic Case	68	
	4.2			
	4.3			
		4.3.1 The Birman–Schwinger Formulation of the		
		Schrödinger Equation	75	
		4.3.2 Derivation of the LT Inequalities	77	
		4.3.3 Useful Corollaries	80	
	4.4	Diamagnetic Inequalities	82	
	4.5	Appendix: An Operator Trace Inequality	85	
5	Elec	etrostatic Inequalities	89	
	5.1	General Properties of the Coulomb Potential	89	
	5.2	Basic Electrostatic Inequality	92	
	5.3	Application: Baxter's Electrostatic Inequality	98	
	5.4	Refined Electrostatic Inequality	100	
6	An	n Estimation of the Indirect Part of the Coulomb Energy		
	6.1			
	6.2	Examples		
	6.3	Exchange Estimate		
	6.4	Smearing Out Charges	112	
	6.5	Proof of Theorem 6.1, a First Bound	114	
	6.6	An Improved Bound		

Contents ix

7	Stal	bility of Non-Relativistic Matter	121
	7.1	Proof of Stability of Matter	122
	7.2	An Alternative Proof of Stability	125
	7.3	Stability of Matter via Thomas–Fermi Theory	127
	7.4	Other Routes to a Proof of Stability	129
		7.4.1 Dyson-Lenard, 1967	130
		7.4.2 Federbush, 1975	130
		7.4.3 Some Later Work	130
	7.5	Extensivity of Matter	131
	7.6	Instability for Bosons	133
		7.6.1 The $N^{5/3}$ Law	133
		7.6.2 The $N^{7/5}$ Law	135
8	Stal	bility of Relativistic Matter	139
	8.1	Introduction	139
		8.1.1 Heuristic Reason for a Bound on α Itself	140
	8.2	The Relativistic One-Body Problem	141
	8.3	A Localized Relativistic Kinetic Energy	145
	8.4	A Simple Kinetic Energy Bound	146
	8.5	Proof of Relativistic Stability	148
	8.6	Alternative Proof of Relativistic Stability	154
	8.7	Further Results on Relativistic Stability	156
	8.8	Instability for Large α , Large q or Bosons	158
9	Magnetic Fields and the Pauli Operator		164
	9.1	Introduction	164
	9.2	The Pauli Operator and the Magnetic Field Energy	165
	9.3	Zero-Modes of the Pauli Operator	166
	9.4	A Hydrogenic Atom in a Magnetic Field	168
	9.5	The Many-Body Problem with a Magnetic Field	171
-	9.6	Appendix: BKS Inequalities	178
10	The Dirac Operator and the Brown-Ravenhall Model		
	10.1 The Dirac Operator		
		10.1.1 Gauge Invariance	184
	10.2	2 Three Alternative Hilbert Spaces	185
		10.2.1 The Brown–Rayenhall Model	186

x Contents

	10.2.2 A Modified Brown-Ravenhall Model	187			
	10.2.3 The Furry Picture	188			
	10.3 The One-Particle Problem	189			
	10.3.1 The Lonely Dirac Particle in a Magnetic Field	189			
	10.3.2 The Hydrogenic Atom in a Magnetic Field	190			
	10.4 Stability of the Modified Brown–Ravenhall Model	193			
	10.5 Instability of the Original Brown–Ravenhall Model	196			
	10.6 The Non-Relativistic Limit and the Pauli Operator	198			
11	Quantized Electromagnetic Fields and Stability of Matter	200			
	11.1 Review of Classical Electrodynamics and its Quantization	200			
	11.1.1 Maxwell's Equations	200			
	11.1.2 Lagrangian and Hamiltonian of the Electromagnetic Field	204			
	11.1.3 Quantization of the Electromagnetic Field	207			
	11.2 Pauli Operator with Quantized Electromagnetic Field	210			
	11.3 Dirac Operator with Quantized Electromagnetic Field	217			
12	The Ionization Problem, and the Dependence of the Energy on				
	N and M Separately	221			
	12.1 Introduction	221			
	12.2 Bound on the Maximum Ionization	222			
	12.3 How Many Electrons Can an Atom or Molecule Bind?	228			
13	Gravitational Stability of White Dwarfs and Neutron Stars	233			
	13.1 Introduction and Astrophysical Background	233			
	13.2 Stability and Instability Bounds	235			
	13.3 A More Complete Picture	240			
	13.3.1 Relativistic Gravitating Fermions	240			
	13.3.2 Relativistic Gravitating Bosons	242			
	13.3.3 Inclusion of Coulomb Forces	243			
14	The Thermodynamic Limit for Coulomb Systems	247			
	14.1 Introduction	247			
	14.2 Thermodynamic Limit of the Ground State Energy	249			
	14.3 Introduction to Quantum Statistical Mechanics and the				
	Thermodynamic Limit	252			

Contents	xi

7

14.4 A Brief Discussion of Classical Statistical Mechanics	258
14.5 The Cheese Theorem	260
14.6 Proof of Theorem 14.2	263
14.6.1 Proof for Special Sequences	263
14.6.2 Proof for General Domains	268
14.6.3 Convexity	270
14.6.4 General Sequences of Particle Numbers	271
14.7 The Jellium Model	271
List of Symbols	276
Bibliography	279
Index	290

-