José Ferreirós

Labyrinth of Thought

A History of Set Theory and Its Role in Modern Mathematics

Birkhäuser Verlag Basel · Boston · Berlin

Contents

Intr	oduction	хi
	1. Aims and Scope	xiii
	2. General Historiographical Remarks	xvii
Par	t One: The Emergence of Sets within Mathematics	1
I	Institutional and Intellectual Contexts in	2
	German Mathematics, 1800–1870	3
	1. Mathematics at the Reformed German Universities	4
	2. Traditional and 'Modern' Foundational Viewpoints	10
	3. The Issue of the Infinite	18
	4. The Göttingen Group, 1855–1859	24
	5. The Berlin School, 1855–1870	32
II	A New Fundamental Notion: Riemann's Manifolds	39
	1. The Historical Context: Grössenlehre, Gauss, and Herbart	41
	2. Logical Prerequisites	47
	3. The Mathematical Context of Riemann's Innovation	53
	4. Riemann's General Definition	62
	5. Manifolds, Arithmetic, and Topology	67
	6. Riemann's Influence on the Development of Set Theory	70
	Appendix: Riemann and Dedekind	77
Ш	Dedekind and the Set-theoretical Approach to Algebra	81
	1. The Algebraic Origins of Dedekind's Set Theory, 1856–58	82
	2. A New Fundamental Notion for Algebra: Fields	90
	3. The Emergence of Algebraic Number Theory	94

Contents vii

	4. Ideals and Methodology	. 99
	5. Dedekind's Infinitism	. 107
	6. The Diffusion of Dedekind's Views	. 111
IV	The Real Number System	. 117
	1. 'Construction' vs. Axiomatization	. 119
	2. The Definitions of the Real Numbers	. 124
	3. The Influence of Riemann: Continuity in Arithmetic and Geometry	. 135
	4. Elements of the Topology of ${\mathbb R}$. 137
V (Origins of the Theory of Point-Sets	. 145
	Transformations in the Theory of Real Functions	. 147
	2. Lipschitz and Hankel on Nowhere Dense Sets and Integration	. 154
	3. Cantor on Sets of the First Species	. 157
	4. Nowhere Dense Sets of the Second Species	. 161
	5. Crystallization of the Notion of Content	. 165
Par	rt Two: Entering the Labyrinth – Toward Abstract Set Theory	. 169
VI	The Notion of Cardinality and the Continuum Hypothesis	. 171
	1. The Relations and Correspondence Between Cantor and Dedekind	. 172
	2. Non-denumerability of IR	. 176
	3. Cantor's Exposition and the 'Berlin Circumstances'	. 183
	4. Equipollence of Continua \mathbb{R} and \mathbb{R}^n	. 187
	5. Cantor's Difficulties	. 197
	6. Derived Sets and Cardinalities	. 202
	7. Cantor's Definition of the Continuum	. 208
	8. Further Efforts on the Continuum Hypothesis	. 210
VII	Sets and Maps as a Foundation for Mathematics	. 215
	1. Origins of Dedekind's Program for the Foundations of Arithmetic	210
	1. Origins of Dedekind 3 Flogram for the Foundations of Antonnedo	. 210

viii Contents

	3. Through the Natural Numbers to Pure Mathematics	232
	4. Dedekind and the Cantor-Bernstein Theorem	239
	5. Dedekind's Theorem of Infinity, and Epistemology	241
	6. Reception of Dedekind's Ideas	248
VIII	The Transfinite Ordinals and Cantor's Mature Theory	257
	1. "Free Mathematics"	259
	2. Cantor's Notion of Set in the Early 1880s	263
	3. The Transfinite (Ordinal) Numbers	267
	4. Ordered Sets	274
	5. The Reception in the Early 1880s	282
	6. Cantor's Theorem	286
	7. The Beiträge zur Begründung der transfiniten Mengenlehre	288
	8. Cantor and the Paradoxes	290
Par	rt Three: In Search of an Axiom System	297
IX	Diffusion, Crisis, and Bifurcation: 1890 to 1914	
	1. Spreading Set Theory	
	2. The Complex Emergence of the Paradoxes	
	3. The Axiom of Choice and the Early Foundational Debate	
	4. The Early Work of Zermelo	317
	5. Russell's Theory of Types	
	6. Other Developments in Set Theory	333
X	Logic and Type Theory in the Interwar Period	
	1. An Atmosphere of Insecurity: Weyl, Brouwer, Hilbert	
	2. Diverging Conceptions of Logic	345
	3. The Road to the Simple Theory of Types	348
	4. Type Theory at its Zenith	353
	5. A Radical Proposal: Weyl and Skolem on First-Order Logic	357
ΧI	Consolidation of Axiomatic Set Theory	365

Contents ix

2	2. Toward the Modern Axiom System: von Neumann and Zermelo	370
3	The System von Neumann-Bernays-Gödel	378
4	Gödel's Relative Consistency Results	382
5	5. First-Order Axiomatic Set Theory	386
6	6. A Glance Ahead: Mathematicians and Foundations after World War II	
Bibliographical References		
Index	of Illustrations	422
Name	Index	423
Subjec	ct Index	430