QUANTUM PHYSICS of Atoms, Molecules, Solids, Nuclei, and Particles

Second Edition

ROBERT EISBERG

University of California, Santa Barbara

ROBERT RESNICK

Rensselaer Polytechnic Institute

.

JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

CONTENTS

1	THERMAL RAD	IATION AND PLANCK'S POSTULATE	1
	1-1 Introduction		2
	1-2 Thermal Rac	liation	2
	1-3 Classical The	eory of Cavity Radiation	6
	1-4 Planck's The	ory of Cavity Radiation	13
	1-5 The Use of F	Planck's Radiation Law in Thermometry	19
	1-6 Planck's Pos 1-7 A Bit of Qua	intum History	20 21
2	PHOTONS-PA	RTICLELIKE PROPERTIES OF RADIATION	26
	2-1 Introduction		27
	2-2 The Photoel	ectric Effect	27
	2-3 Einstein's Qu	aantum Theory of the Photoelectric Effect	29
	2-4 The Compto	n Effect	34
	2-5 The Dual Na	ature of Electromagnetic Radiation	4 0
	2-6 Photons and	X-Ray Production	40
	2-7 Pair Product	tion and Pair Annihilation	43
	2-8 Cross Section	ns for Photon Absorption and Scattering	48
3	DE BROGLIE'S POSTULATE-WAVELIKE PROPERTIES		
	3-1 Matter Wave	es	56
	3-2 The Wave-P	article Duality	62
	3-3 The Uncerta	inty Principle	65
	3-4 Properties of	f Matter Waves	69
	3-5 Some Conse	quences of the Uncertainty Principle	77
	3-6 The Philosop	phy of Quantum Theory	79
4	BOHR'S MODEL	OF THE ATOM	85
	4-1 Thomson's N	Aodel	86
	4-2 Rutherford's	Model	90
	4-3 The Stability	of the Nuclear Atom	95
	4-4 Atomic Spec	tra	96
	4-5 Bohr's Postu	ilates	98
	4-6 Bohr's Mode	:l ·	100
	4-7 Correction for	or Finite Nuclear Mass	105
	4-8 Atomic Ener	gy States	107
	4-9 Interpretatio	n of the Quantization Rules	110
	4-10 Sommerfeld's	s Model	114
	4-11 The Corresp	ondence Principle	117
	4-12 A Critique o	the Old Quantum Theory	118

	5	SCHROEDINGER'S THEORY OF QUANTUM MECHANICS	124
		5-1 Introduction	125
		5-2 Plausibility Argument Leading to Schroedinger's Equation	128
		5-3 Born's Interpretation of Wave Functions	134
		5-4 Expectation Values	141
		5-5 The Time-Independent Schroedinger Equation	150
		5-6 Required Properties of Eigenfunctions	155
		5-7 Energy Quantization in the Schroedinger Theory	157
		5-8 Summary	165
	6	SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER EQUATIONS	176
		6-1 Introduction	177
		6-2 The Zero Potential	178
		6-3 The Step Potential (Energy Less Than Step Height)	184
		6-4 The Step Potential (Energy Greater Than Step Height)	193
		6-5 The Barrier Potential	199
		6-6 Examples of Barrier Penetration by Particles	205
		6-7 The Square Well Potential	209
		6-8 The Infinite Square Well Potential	214
		6-9 The Simple Harmonic Oscillator Potential 6-10 Summary	221
	7	ONE-ELECTRON ATOMS	232
		7.1. Introduction	222
		7.1 Introduction 7.2 Development of the Schroedinger Equation	233
		7.2 Separation of the Time Independent Equation	234
		7.4 Solution of the Equations	235
		7-5 Figenvalues Quantum Numbers and Degeneracy	230
		7-6 Figenfunctions	237
		7-7 Probability Densities	242
		7-8 Orbital Angular Momentum	254
		7-9 Eigenvalue Equations	259
	8	MAGNETIC DIPOLE MOMENTS, SPIN, AND TRANSITION RATES	266
	. •	8-1 Introduction	267
		8-2 Orbital Magnetic Dipole Moments	267
		8-3 The Stern-Gerlach Experiment and Electron Spin	272
		8-4 The Spin-Orbit Interaction	278
		8-5 Total Angular Momentum	281
		8-6 Spin-Orbit Interaction Energy and the Hydrogen Energy Levels	284
		8-7 Transition Rates and Selection Rules	288
Υ.		8-8 A Comparison of the Modern and Old Quantum Theories	295
	9	MULTIELECTRON ATOMS—GROUND STATES AND X-RAY EXCITATIONS	300
		9-1 Introduction	301
		9-2 Identical Particles	302
		9-3 The Exclusion Principle	308
		9-4 Exchange Forces and the Helium Atom	310
		9-5 The Hartree Theory	319

	9-6 9-7 9-8	Results of the Hartree Theory Ground States of Multielectron Atoms and the Periodic Table X-Ray Line Spectra	322 331 337	
10	MUL	TIELECTRON ATOMS—OPTICAL EXCITATIONS	347	
	10-1	Introduction	348	
	10-2	Alkali Atoms	349	
	10-3	Atoms with Several Optically Active Electrons	352	
	10-4	LS Coupling	356	
	10-5	Energy Levels of the Carbon Atom	361	
	10-6 10-7	The Zeeman Effect Summary	364 , 370	
11	QUANTUM STATISTICS			
	11-1	Introduction	376	
	11-2	Indistinguishability and Quantum Statistics	377	
	11-3	The Quantum Distribution Functions	380	
	11-4	Comparison of the Distribution Functions	384	
	11-5	The Specific Heat of a Crystalline Solid	388	
	11-6	The Boltzmann Distributions as an Approximation to Quantum		
		Distributions	391	
	11-7	The Laser	392	
	11-8	The Photon Gas	398	
	11-9	The Phonon Gas	399	
	11-10	Bose Condensation and Liquid Helium -	399	
	11-11	Contact Potential and Thermionic Emission	404	
	11-12	Classical and Quantum Descriptions of the State of a System	407	
12	MOLECULES			
·	12-1	Introduction	416	
	12-2	Ionic Bonds	416	
	12-3	Covalent Bonds	418	
	12-4	Molecular Spectra	422	
	12-5	Rotational Spectra	423	
	12-6	Vibration-Rotation Spectra	426	
	12-7	Electronic Spectra	429	
	12-8	The Raman Effect	432	
	12-9	Determination of Nuclear Spin and Symmetry Character	434	
13	SOL	IDS—CONDUCTORS AND SEMICONDUCTORS	442	
	13-1	Introduction	443	
	13-2	Types of Solids	443	
	13-3	Band Theory of Solids	445	
	13-4	Electrical Conduction in Metals	450	
	13-5	The Quantum Free-Electron Model	452	
	13-6	I ne initiation of Electrons in a Periodic Lattice	456	
	13-/	Electron Desitron Annihilation in Solids	400	
	13-0	Semiconductors	404 767	
	13-10) Semiconductor Devices	472	

- -

14	SOLI	DS—SUPERCONDUCTORS AND MAGNETIC PROPERTIES	483
	14-1	Superconductivity	484
	14-2	Magnetic Properties of Solids	492
	14-3	Paramagnetism	493
	14-4	Ferromagnetism	497
	14-5	Antiferromagnetism and Ferrimagnetism	503
15	NUCI	LEAR MODELS	508
	15-1	Introduction	509
	15-2	A Survey of Some Nuclear Properties	510
	15-3	Nuclear Sizes and Densities	515
	15-4	Nuclear Masses and Abundances	519
	15-5	The Liquid Drop Model	526
	15-6	Magic Numbers	530
	15-7	The Fermi Gas Model	531
	15-8	The Shell Model	534
	15-9	Predictions of the Shell Model	540
	15-10	The Collective Model	545
	15-11	Summary	549
16	NUCI	LEAR DECAY AND NUCLEAR REACTIONS	554
	16-1	Introduction	555
	16-2	Alpha Decay	555
	16-3	Beta Decay	562
	16-4	The Beta-Decay Interaction	572
	16-5	Gamma Decay	578
	16-6	The Mössbauer Effect	584
	16-7	Nuclear Reactions	588
	16-8	Excited States of Nuclei	598
	16-9	Fission and Reactors	602
	16-10	Fusion and the Origin of the Elements	607
17	INTR	ODUCTION TO ELEMENTARY PARTICLES	617
	~ 17-1	Introduction	618
	17-2	Nucleon Forces	618
	17-3	Isospin	631
	17-4	Pions	634
· •	17-5	Leptons	641
	17-6	Strangeness	643
	17-7	Families of Elementary Particles	649
	17-8	Observed Interactions and Conservation Laws	653
18	MOR	E ELEMENTARY PARTICLES	666
	18-1	Introduction	667
	18-2	Evidence for Partons	667
	18-3	Unitary Symmetry and Quarks	673
	18-4	Extensions of SU(3)—More Quarks	678
	18-5	Color and the Color Interaction	683
	18-6	Introduction to Gauge Theories	688
	18-7	Quantum Chromodynamics	691
	18-8	Electroweak Theory	699
	18-9	Grand Unification and the Fundamental Interactions	706

Appendix A	The Special Theory of Relativity
Appendix B	Radiation from an Accelerated Charge
Appendix C	The Boltzmann Distribution
Appendix D	Fourier Integral Description of a Wave Group
Appendix E	Rutherford Scattering Trajectories
Appendix F	Complex Quantities
Appendix G	Numerical Solution of the Time-Independent Schroedinger
	Equation for a Square Well Potential
Appendix H	Analytical Solution of the Time-Independent Schroedinger
	Equation for a Square Well Potential
Appendix Í	Series Solution of the Time-Independent Schroedinger
	Equation for a Simple Harmonic Oscillator Potential
Appendix J	Time-Independent Perturbation Theory
Appendix K	Time-Dependent Perturbation Theory
Appendix L	The Born Approximation
Appendix M	The Laplacian and Angular Momentum Operators in
	Spherical Polar Coordinates
Appendix N	Series Solutions of the Angular and Radial Equations for
	a One-Electron Atom
Appendix O	The Thomas Precession
Appendix P	The Exclusion Principle in LS Coupling
Appendix Q	Crystallography
Appendix R	Gauge Invariance in Classical and Quantum Mechanical
	Electromagnetism
Appendix S	Answers to Selected Problems
T 1	

Index