INTRODUCTION TO PROBABILISTIC AUTOMATA

Azaria Paz

Department of Computer Sciences and Mathematics
Israel Institute of Technology
Haifa, Israel

Academic Press
New York and London
Contents

Preface ix
Acknowledgments xi
Abbreviations xiii
Notation xv

PRELIMINARIES xix
A. *Notations* xix
B. *Some Analytical Lemmas* xx
C. *Some Algebraic Preliminaries* xxi
D. *Probabilistic Preliminaries* xxii

Chapter I. STOCHASTIC SEQUENTIAL MACHINES 1

A. *The Model* 1
1. Definitions and Basic Relations 1
2. Moore, Mealy, and Other Types of SSMs 6
3. Synthesis of Stochastic Machines 10
4. Bibliographical Notes 18

B. *State Theory and Equivalence* 19
1. Set K^M and Matrix H^M 19
2. Equivalence and Minimization of States 21
3. Covering Relations 29
4. Decision Problems 35
5. Minimization of States by Covering—Problem I 37
6. Minimization of States by Covering—Problem II 43
7. Minimization of States by Covering—Problem III 50
8. Bibliographical Notes 55

C. *Input–Output Relations* 55
1. Definitions and Basic Properties 55
2. Compound Sequence Matrix 58
3. Representability of Relations by Machines 60
4. Bibliographical Notes 66

Chapter II. MARKOV CHAINS 67

A. *Nonhomogeneous Markov Chains and Systems* 67
1. Functionals over Stochastic Matrices 67

vii
2. Nonhomogenous Markov Chains 73
3. Nonhomogeneous Markov Systems 79
4. Graph Properties and Decision Problems 85
5. Eigenvalues of Stochastic Matrices and Particular Cases 98
6. Bibliographical Notes 100

B. Operation on Markov Systems 101
1. The Direct Sum and Product 101
2. Decomposition 104
3. Bibliographical Notes 116

C. Word Functions 116
1. Functions of Markov Chains 117
2. Function Induced by Valued Markov Systems 133
3. Bibliographical Notes 143

Chapter III. EVENTS, LANGUAGES, AND ACCEPTORS 145
Introduction 145
A. Events 145
1. Probabilistic Events 146
2. Pseudo Probabilistic Events 150
3. Bibliographical Notes 152
B. Cut-Point Events 153
1. Closure Properties 153
2. Regular Events and Probabilistic Cut-Point Events 158
3. The Cardinality of PCEs and Saving of States 163
4. Particular Cases 171
C. Quasidfinite PCEs 175
5. Approximations 178
6. Some Nonclosure and Unsolvability Results 184

Chapter IV. APPLICATIONS AND GENERALIZATIONS 195
Introduction 195
A. Information Theory 195
B. Reliability 196
C. Learning Theory and Pattern Recognition 196
D. Control 197
E. Other Applications 197
F. Extensions and Connections to Other Theories 197

References 199

Answers and Hints to Selected Exercises 209

Author Index 221

Subject Index 224