STATISTICAL METHODS FOR ESTIMATING PETROLEUM RESOURCES

P. J. Lee

1

ŝ

Contents

~

1

	Foreword to the Series	vii
	Foreword	ix
.1	Introduction	3
	Background	3
	Objectives	4
	An Outline of the Evaluation Procedure	5
	Scope	5
2	Evaluation Models	7
	Geological Models and Play Definitions	7
	Statistical Models	11
	Concepts Used	14
	The Nature of Geological Populations	18
	The Beaverhill Lake Play	18
	Outliers	21
	Correlation between Random Variables	22
	Mixed Populations	25
3	Estimating Mature Plays	26
	The Superpopulation Model	27
	Lognormal Discovery Process Model	27
	Nonparametric Discovery Process Model	33
	Estimating Pool-Size Distribution for the Beaverhill	
	Lake Play	34
	Lognormal Nonparametric–Poisson Discovery	
	Process Model	36
	Previous Work	36
	The BDSCV Model	38
	The Keg River Shelf	39
	Remarks	39
	Multivariate Discovery Process Model	40
	Bivariate Lognormal Distribution for Oil	
	and Gas Pools	43

Contents

Estimating the Covariance Matrix Remarks Pool-Size-by-Rank by Order Statistics Interpretations The Matching Process: Operation The Beaverhill Lake Play Pool Sizes Conditional on Pool Rank Distribution of the Ratio of Two Pools Play Resource and Potential Distribution Play Resource Distribution Play Potential Distribution Expected Play Potential Probable Play Potential Distribution The Beaverhill Lake Play

4 More about Discovery Process Models

Validation Study by Simulation Validation Procedure Estimates for the N Value Lognormal Population Weibull Population Pareto Population Mixed Population of Two Lognormal Populations Mixed Population of Lognormal, Weibull, and Pareto Populations Estimation of Exploration Efficiency Pool-Size-by-Rank Play Resource Distribution Reduction of Uncertainty Validation by Retrospective Study Jumping Pound Rundle Gas Play Swan Hills Shelf Margin Gas and Leduc Isolated Reef Oil Plays Remarks Impact of Nonproductive and Noncommercial Pools Impact of a Nonproductive Trap Impact of Missing Pools Testing the Adequacy of Probability Distributions The Procedure

xviii

	Contents	xix
	Interpretation	89
	Outliers	89
	Long or Short Tails at Both Ends	90
	Symmetry	90
	Plateaus	90
	The Be å verhill Lake Play	91
	Plays from Worldwide Basins	91
	Pool-Size Distribution of a Basin	100
	Justifications for Using a Lognormal Distribution	102
	Evidence from the $Q-Q$ Plots	102
	Approximation of a Lognormal Distribution to	
	Geological Random Variables	102
	Advantages of Using a Lognormal Distribution	103
	Estimation Error Resulting from Lognormal	
	Distribution Approximation	105
5	Evaluating Conceptual Plays	106
	Geological Factors	106
	Exploration Risk	106
	Methods for Estimating Marginal Probability	107
	Play-Level Geological Factor	108
	Prospect-Level Geological Factor	111
	Marginal Probability Distribution	112
	Dependence in Prospect-Level Geological Factors	114
	The East Coast Play	115
	Pool-Size Distribution	116
	The Monte Carlo Method	116
	The Lognormal Approximation	119
	Examples	120
	The Beaverhill Lake Play	120
	The East Coast Play	124
	Estimating Resources	127
	Number-of-Prospects Distribution	127
	Number-of-Pools Distribution	127
	Play Resource Distribution	131
	Pool-Size-by-Rank	133
	Generation of Reservoir Parameters	135
	Constructing Probability Distributions	136

Contents

_

~

6	Estimation Update and Feedback Procedures
	Procedure for Estimating Mature Plays
	Step 1: Formulating a Play Definition and Its
	Geographic Boundary
1	Step 2: Compiling Play Data
	Step 3: Validating Mixed Populations or Lognormal
	Assumptions
	Step 4: Estimating Pool-Size Distribution
	Step 5: Determining an Appropriate Probability
	Distribution
	Step 6: Estimating Pool-Size-by-Rank
	Step 7: Estimating Expected and Probable Play Potential
	Step 8: Computing Play Resource Distribution
	Procedure for Estimating Conceptual Plays
	Conceptual Plays from a Mature Basin
	Conceptual Plays from a Frontier Basin
	Step 1: Formulating Play Definitions
	Step 2: Estimating Pool-Size Distribution
	Step 3: Estimating Number-of-Pools Distribution
	Step 4: Estimating Individual Pool-Size Distribution
	Step 5: Estimating Play Resource Distribution
	Step 6: Estimating Other Reservoir Parameters
	Update Procedure
	Feedback Procedure
	Can We Predict the Current Situation?
	Has the Largest Pool Been Discovered?
	Pool Size Conditional on Play Resource
7	Other Assessment Methods—An Overview
	Geological Approach
	Volumetric Yield by Analogous Basin Method
	Basin Classification Method
	Geochemical Approaches
	Petroleum System or Geochemical Mass Balance Method
	Burial and Thermal History Modeling
	Statistical Approaches
	Finite Population Methods
	The Arps and Roberts Method
	Bickel, Nair, and Wang's Method

хх

.

Contents	xxi
Kaufman's Anchored Method	164
Chen and Sinding-Larsen's Geo-Anchored Method	166
Superpopulation Methods	166
USGS Log-Geometric Method	166
The Creaming Method	169
The Long Method	170
The Regression Method	170
The Fractal Method	171
Concluding Remarks	174
Appendix A: Estimation of Superpopulation Parameters	
from a Successively Sampled Finite Population	176
The Likelihood Function	178
Maximum-Likelihood Estimation	183
Inference for $\boldsymbol{\theta}$ and N	192
Inference for the Weight Function	197
Appendix B: Nonparametric Procedure for Estimating	
Distributions	200
Appendix C: The Largest Pool Size and Its Distribution	203
The rth Largest Pool-Size Distribution	203
Generation of Reservoir Parameters for a Given	
Pool Size	205
Appendix D: Pool Size Conditional on Pool Ranks	208
Theorem 1	208
Corollary	209
Theorem 2	210
References	213
Index	221

8