CAUSALITY

Models, Reasoning, and Inference

Judea Pearl

University of California, Los Angeles

Contents

Preface page xiii				
1	Introduction to Probabilities, Graphs, and Causal Models			
	1.1	Introduction to Probability Theory	1	
		1.1.1 Why Probabilities?	1	
		1.1.2 Basic Concepts in Probability Theory	2	
		1.1.3 Combining Predictive and Diagnostic Supports	6	
		1.1.4 Random Variables and Expectations	8	
		1.1.5 Conditional Independence and Graphoids	11	
	1.2	Graphs and Probabilities	12	
	;	1.2.1 Graphical Notation and Terminology	12	
		1.2.2 Bayesian Networks	13	
		1.2.3 The <i>d</i> -Separation Criterion	16	
		1.2.4 Inference with Bayesian Networks	20	
	1.3	Causal Bayesian Networks	21	
		1.3.1 Causal Networks as Oracles for Interventions	22	
		1.3.2 Causal Relationships and Their Stability	24	
	1.4	Functional Causal Models	26	
		1.4.1 Structural Equations	27	
		1.4.2 Probabilistic Predictions in Causal Models	30	
		1.4.3 Interventions and Causal Effects in Functional Models	32	
		1.4.4 Counterfactuals in Functional Models	33	
	1.5	Causal versus Statistical Terminology	38	
2	A T	heory of Inferred Causation	41	
	2.1	Introduction	42	
	2.2	The Causal Modeling Framework	43	
	2.3	Model Preference (Occam's Razor)	45	
	2.4	Stable Distributions	48	
	2.5	Recovering DAG Structures	49	
	2.6	Recovering Latent Structures	51	
	2.7	Local Criteria for Causal Relations	54	

/111	Contents
(111	Contents

	2.8	Nonte	mporal Causation and Statistical Time	57	
	2.9	Concl	usions	59	
		2.9.1	On Minimality, Markov, and Stability	61	
3		Causal Diagrams and the Identification of Causal Effects			
	3.1			66	
	3.2	Interve	ention in Markovian Models	68	
		3.2.1	Graphs as Models of Interventions	68	
		3.2.2	Interventions as Variables	70	
			Computing the Effect of Interventions	72	
			Identification of Causal Quantities	77	
	3.3	3.3 Controlling Confounding Bias		78	
			The Back-Door Criterion	79	
		3.3.2	The Front-Door Criterion	81	
		3.3.3	Example: Smoking and the Genotype Theory	83	
	3.4	A Cal	culus of Intervention	85	
		3.4.1	Preliminary Notation	85	
		3.4.2	Inference Rules	85	
		3.4.3	Symbolic Derivation of Causal Effects: An Example	86	
		3.4.4	Causal Inference by Surrogate Experiments	88	
	3.5 Graphical Tests of Identifiability		89		
		3.5.1	Identifying Models	91	
		3.5.2	Nonidentifying Models	93	
	3.6	Discus	ssion	94	
		3.6.1	Qualifications and Extensions	94	
		3.6.2	Diagrams as a Mathematical Language	96	
		3.6.3	Translation from Graphs to Potential Outcomes	98	
		3.6.4	Relations to Robins's G-Estimation	102	
4	Acti		ans, and Direct Effects	107	
	4.1	Introd	luction	108	
		4.1.1	Actions, Acts, and Probabilities	108	
		4.1.2	Actions in Decision Analysis	110	
		4.1.3	Actions and Counterfactuals	112	
	4.2	Conditional Actions and Stochastic Policies			
	4.3	When	Is the Effect of an Action Identifiable?	114	
		4.3.1	Graphical Conditions for Identification	114	
		4.3.2	Remarks on Efficiency	116	
		4.3.3	Deriving a Closed-Form Expression for Control Queries	117	
		4.3.4	Summary	118	
	4.4	The Id	dentification of Plans	118	
		4.4.1	Motivation	118	
		4.4.2	Plan Identification: Notation and Assumptions	120	
		4.4.3	Plan Identification: A General Criterion	121	
		4.4.4	Plan Identification: A Procedure	124	

Contents

	4.5	Direct	Effects and Their Identification	126
		4.5.1	Direct versus Total Effects	126
		4.5.2	Direct Effects, Definition, and Identification	127
		4.5.3	Example: Sex Discrimination in College Admission	128
		4.5.4	Average Direct Effects	130
5	Cau	sality a	and Structural Models in Social Science and Economics	133
	5.1	Introd	uction	134
		5.1.1	Causality in Search of a Language	134
		5.1.2	SEM: How its Meaning Became Obscured	135
		5.1.3	Graphs as a Mathematical Language	138
	5.2	Graph	s and Model Testing	140
		5.2.1	The Testable Implications of Structural Models	140
		5.2.2	Testing the Testable	144
		5.2.3	Model Equivalence	145
	5.3	Graph	s and Identifiability	149
		5.3.1	Parameter Identification in Linear Models	149
		5.3.2	Comparison to Nonparametric Identification	154
		5.3.3	Causal Effects: The Interventional Interpretation of	
			Structural Equation Models	157
	5.4	Some	Conceptual Underpinnings	159
		5.4.1	What Do Structural Parameters Really Mean?	159
		5.4.2	Interpretation of Effect Decomposition	163
		5.4.3	Exogeneity, Superexogeneity, and Other Frills	165
	5.5	Concl	usion	170
6	Sim	pson's	Paradox, Confounding, and Collapsibility	173
	6.1	Simps	son's Paradox: An Anatomy	174
		6.1.1	A Tale of a Non-Paradox	174
		6.1.2	A Tale of Statistical Agony	175
		6.1.3	Causality versus Exchangeability	177
		6.1.4	A Paradox Resolved (Or: What Kind of Machine Is Man?)	180
	6.2	Why '	There Is No Statistical Test for Confounding, Why Many	
		Think	There Is, and Why They Are Almost Right	182
		6.2.1	Introduction	182
		6.2.2	Causal and Associational Definitions	184
	6.3	How t	the Associational Criterion Fails	185
		6.3.1	Failing Sufficiency via Marginality	185
		6.3.2	Failing Sufficiency via Closed-World Assumptions	186
		6.3.3	Failing Necessity via Barren Proxies	186
		6.3.4	Failing Necessity via Incidental Cancellations	188
	6.4	Stable	e versus Incidental Unbiasedness	189
		6.4.1	Motivation	189
		6.4.2	Formal Definitions	191
		643	Operational Test for Stable No-Confounding	192

X Contents

	6.5	Confo	ounding, Collapsibility, and Exchangeability	193
		6.5.1	Confounding and Collapsibility	193
		6.5.2	Counfounding versus Confounders	194
		6.5.3	Exchangeability versus Structural Analysis of Confounding	196
	6.6	Concl	usions	199
7	The	Logic	of Structure-Based Counterfactuals	201
	7.1	Struct	ural Model Semantics	202
		7.1.1	Definitions: Causal Models, Actions, and Counterfactuals	202
		7.1.2	Evaluating Counterfactuals: Deterministic Analysis	207
		7.1.3	Evaluating Counterfactuals: Probabilistic Analysis	212
		7.1.4	The Twin Network Method	213
	7.2	Applie	cations and Interpretation of Structural Models	215
		7.2.1	Policy Analysis in Linear Econometric Models: An	
			Example	215
		7.2.2	The Empirical Content of Counterfactuals	217
		7.2.3	Causal Explanations, Utterances, and Their Interpretation	221
		7.2.4	From Mechanisms to Actions to Causation	223
		7.2.5	Simon's Causal Ordering	226
	7.3	Axion	natic Characterization	228
		7.3.1	The Axioms of Structural Counterfactuals	228
		7.3.2	Causal Effects from Counterfactual Logic: An Example	231
		7.3.3	Axioms of Causal Relevance	234
	7.4	Struct	ural and Similarity-Based Counterfactuals	238
		7.4.1	Relations to Lewis's Counterfactuals	238
		7.4.2	Axiomatic Comparison	240
		7.4.3	Imaging versus Conditioning	242
		7.4.4	Relations to the Neyman-Rubin Framework	243
		7.4.5	Exogeneity Revisited: Counterfactual and Graphical	
			Definitions	245
	7.5	Struct	cural versus Probabilistic Causality	249
		7.5.1	The Reliance on Temporal Ordering	249
		7.5.2	The Perils of Circularity	250
		7.5.3	The Closed-World Assumption	252
		7.5.4	Singular versus General Causes	253
		7.5.5	Summary	256
8	Imp	erfect l	Experiments: Bounding Effects and Counterfactuals	259
	8.1	Introd	luction	259
		8.1.1	Imperfect and Indirect Experiments	259
		8.1.2	Noncompliance and Intent to Treat	261
	8.2	Bound	ding Causal Effects	262
		8.2.1	Problem Formulation	262
		8.2.2	The Evolution of Potential-Response Variables	263
		8.2.3	Linear Programming Formulation	266

Contents xi

		8.2.4	The Natural Bounds	268
		8.2.5	Effect of Treatment on the Treated	269
		8.2.6	Example: The Effect of Cholestyramine	270
	8.3	Counter	rfactuals and Legal Responsibility	271
	8.4	A Test	for Instruments	274
	8.5	Causal	Inference from Finite Samples	275
		8.5.1	Gibbs Sampling	275
		8.5.2	The Effects of Sample Size and Prior Distribution	277
		8.5.3	Causal Effects from Clinical Data with Imperfect	
			Compliance	277
		8.5.4	Bayesian Estimate of Single-Event Causation	280
	8.6	Conclu	sion	281
9		=	f Causation: Interpretation and Identification	283
	9.1	Introdu		283
	9.2		ary and Sufficient Causes: Conditions of Identification	286
		9.2.1	Definitions, Notation, and Basic Relationships	286
		9.2.2	1 & 3	289
		9.2.3	, , ,	291
		9.2.4	į į	293
	9.3	-	les and Applications	296
		9.3.1	Example 1: Betting against a Fair Coin	297
		9.3.2	Example 2: The Firing Squad	297
		9.3.3	Example 3: The Effect of Radiation on Leukemia	299
		9.3.4	Example 4: Legal Responsibility from Experimental and	
			Nonexperimental Data	302
	0.4	9.3.5	Summary of Results	303
	9.4		cation in Nonmonotonic Models	304
	9.5	Conclu		307
10		Actual C		309
	10.1		action: The Insufficiency of Necessary Causation	309
		10.1.1	Singular Causes Revisited	309
		10.1.2 10.1.3	Preemption and the Role of Structural Information	311
		10.1.3	Overdetermination and Quasi-Dependence	313
	10.2		Mackie's INUS Condition	313
	10.2		tion, Dependence, and Sustenance Beams and Sustenance-Based Causation	316
	10.3	10.3.1		318
		10.3.1	Causal Beams: Definitions and Implications	318
		10.3.2	Examples: From Disjunction to General Formulas	320
		10.5.5	Beams, Preemption, and the Probability of Single-Event	200
		10.3.4	Causation Path-Switching Causation	322
		10.3.4	_	324 325
	10.4		Temporal Preemption	323
	10.4	Concid	010110	341

XII	Contents
Epilogue The Art and Science of Cause and Effect	
A public lecture delivered November 1996 as part of	
the UCLA Faculty Research Lectureship Program	331
Bibliography	359
Name Index	375
Subject Index	379