SPECIALIZATION, SPECIATION, AND RADIATION

THE EVOLUTIONARY BIOLOGY OF HERBIVOROUS INSECTS

Edited by

KELLEY JEAN TILMON

甲

UNIVERSITY OF CALIFORNIA PRESS

Berkeley Los Angeles London

CONTENTS

CONTRIBUTORS xi
PREFACE xiii
Kelley J. Tilmon

PART I Evolution of Populations and Species

- Chemical Mediation of Host-Plant Specialization:
 The Papilionid Paradigm 3
 May R. Berenbaum and Paul P. Feeny
 How Lepidopterans Prefer 4
 How Lepidopteran Larvae Perform 4
 Preference-Performance Relationships in Lepidoptera 5
- Chemical Mediation of Preference and Performance:
 Papilionids as Paradigm 6
 Identifying the Chemical Cues: Kairomones and
 Allomones 8
 Preference and Performance Genes 11
 P450s and Host-Use Evolution 14
 Conclusions 15
- Evolution of Preference and Performance
 Relationships 20
 Timothy P. Craig and Joanne K. Itami
 Limiting Constraints 21
 Preference and Performance in Three Well-Studied
 Interactions 22
 Alternative Hypotheses 26
 Testing Hypotheses on Preference and
 Performance 27
 Conclusion 27

- 3 Evolutionary Ecology of Polyphagy 29

 Michael S. Singer

 General Explanations for Host Specificity 30

 What about Polyphagy? 31

 Trade-offs as Explanations for Host-Plant Use 32

 Testing Theory with Polyphagous Woolly Bear

 Caterpillars 34

 Conclusions 39
- 4 Phenotypic Plasticity 43

 Kailen A. Mooney and Anurag A. Agrawal

 Adaptive Value and Costs of Phenotypic Plasticity 43

 The Consequences of Phenotypic Plasticity 48

 Future Directions 51
- Selection and Genetic Architecture of Plant
 Resistance 58
 Mary Ellen Czesak, Robert S. Fritz, and Cris Hochwender
 Selection on Resistance within Populations 58
 Genetic Architecture of Resistance Traits between
 Populations and Species 61
 Architecture of Resistance in a Willow Hybrid
 System 62
 Summary 66
- 6 Introgression and Parapatric Speciation in a Hybrid Zone 69
 J. Mark Scriber, Gabe J. Ording, and Rodrigo J. Mercader Hybrid Zones, "Evolutionary Novelties," and Isolation 69
 Climate Warming, Thermal Constraints, and Voltinism 70
 The Tiger Swallowtail Butterflies 70
 Hybrid Papilio Populations and Species 75
 The Nuts and Bolts 78

Molecular Work 82 Future Efforts 82 Summary 83

7 Host Shifts, the Evolution of Communication, and Speciation in the Enchenopa binotata Species Complex of Treehoppers 88

Reginald B. Cocroft, Rafael L. Rodríguez, and Randy E. Hunt

Ecological Isolation in the E. binotata

Complex 89

Behavioral Sources of Assortative

Mating 90

Communication in a New Host

Environment 93

Summary 97

8 Host Fruit-Odor Discrimination and Sympatric Host-Race Formation 101 Jeffrey L. Feder and Andrew A. Forbes The Adaptive Zone Hypothesis 102 Ecological Adaptation, Host-Specific Mating, and Reproductive Isolation 102 Tom Wood and Ron Prokopy: Two Pioneers in the Study of Insect Behavior and Diversity 103 Natural and Life History of Rhagoletis pomonella 103 Behavioral Testing Using Synthetic Fruit Volatile Blends 104 Genetic Analysis of Fruit-Odor Discrimination 107 Physiological Basis for Fruit-Odor Discrimination 108 A Genetic Model for Fruit-Odor Discrimination 109 Theoretical Significance of the Fruit-Odor _Discrimination Studies 110 Future Directions and-Conclusions 112

9 Comparative Analyses of Ecological Speciation 117
 Daniel J. Funk and Patrik Nosil
 Ecological Speciation 117
 Herbivorous Insect Exemplars 118
 Comparative Approaches and Ecological
 Speciation 120
 Herbivore Analyses and Insights 122
 Comparative Caveats 129
 Opportunities and Directions 131

Appendix: The Four-Component Genetic Model for

Fruit-Odor Discrimination 112

Sympatric Speciation: Norm or Exception? 136
 Douglas J. Futuyma
 Theory 137
 Biological Considerations 138
 Evidence on Sympatric Speciation 141
 The Allopatric Alternative 143
 Conclusions 144

PART II Co- and Macroevolutionary Radiation

- Host-Plant Use, Diversification, and Coevolution: Insights from Remote Oceanic Islands 151
 George K. Roderick and Diana M. Percy
 Islands as a Model System 151
 Lessons from Island Systems 152
 Conclusions 158
- Selection by Pollinators and Herbivores on Attraction and Defense 162
 Lynn S. Adler
 Selection by Pollinators on Plant Resistance 163
 Selection by Herbivores on Floral Traits 164
 Resistance and Attractions Traits May Not Be
 Independent 165
 Herbivores and Pollinators May Not Be
 Independent 166
 Abiotic Factors and Geographic Variation 167
 Future Directions 167
- Adaptive Radiation: Phylogenetic Constraints and Ecological Consequences 174
 Peter W. Price
 The Phylogenetic Constraints Hypothesis 175
 Adaptive Capture and Escape 176
 The Adaptive Radiation of Common Sawflies 177
 Convergence of Constraints 177
 Divergent Constraints 179
 The Similarities of Temperate and Tropical Insect Herbivores 180
 Adaptive Radiation in Temperate and Tropical

Environments 183

- Sequential Radiation through Host-Race Formation:
 Herbivore Diversity Leads to Diversity in Natural
 Enemies 188
 Warren G. Abrahamson and Catherine P. Blair
 Species Cause Species: Sympatric Speciation through
 Host-Race Formation 188
 Sequential Radiation 189
 Conditions for Host-Race Formation 189
 Cases of Sequential Radiation via Host-Race
 Formation 190
 Example Showing No Differentiation 196
 Conclusions 197
- The Oscillation Hypothesis of Host-Plant Range and Speciation 203
 Niklas Janz and Sören Nylin
 The Oscillation Hypothesis 204
 Colonizations and Host-Range Expansions 204
 Synthesis: Speciation Rate 210
 Conclusion 213

Sympatric Speciation Studies 199

Coevolution, Cryptic Speciation, and the Persistence of Interactions 216
 John N. Thompson
 A Blending of Perspectives: Populations, Species, and Species Interactions 216
 Cryptic Speciation in Insects 219
 Cryptic Speciation in Plants and Its Effect on Interactions with Insects 221
 Implications 222

17 Cophylogeny of Figs, Pollinators, Gallers, and Parasitoids 225 Summer I. Silvieus, Wendy L. Clement, and George D. Weiblen Background 225 Overview 227 Sampling and DNA Sequencing 227 Phylogenetic Analysis 230 Reconciliation Analysis 230 Phylogenies of Figs and Wasps 231 Host Specificity of Nonpollinating Fig Wasps 231 Double Dating of Figs and Fig Wasps 232 Modes of Speciation in Fig Pollinators, Gallers, and Parasitoids 236 Conclusions 237

18 The Phylogenetic Dimension of Insect-Plant
Interactions: A Review of Recent
Evidence 240
Isaac S. Winkler and Charles Mitter
Conservatism of Host-Plant Use 241
Signatures of Long-Term History in Extant InsectPlant Interactions 248
Diversification of Phytophagous Insects 253
Synopsis and Conclusions 256

PART III Evolutionary Aspects of Pests, Invasive Species, and the Environment

19 Evolution of Insect Resistance to Transgenic
Plants 267
Bruce E. Tabashnik and Yves Carrière
Transgenic Crops with Bacillus thuringiensis (Bt)
Toxins 267
Bt Toxins and Their Mode of Action 268
Genetic Basis of Resistance to Bt Toxins 268
The Refuge Strategy for Delaying Pest Resistance
to Bt Crops 269
Pink Bollworm versus Bt Cotton in
Arizona 271
Conclusions and a Look to the Future 274

Exotic Plants and Enemy Resistance 280
 John L. Maron and Montserrat Vilà
 Rapid Evolution of Exotics in Response of Enemy Pressure 281
 Exotics as Substrates for Studying the Evolutionary

Response of Plants to Natural Enemies 281
Hypotheses and Evidence for Plant Defenses 281
Experimental Evidence for Evolution of Exotic Plant
Defense 283

Response of St. John's Wort to an Altered Enemy Landscape 283

Among-Population Variation in Enemy Resistance 289

Are Differences in Exotic and Native Phenotypes the Product of Evolution? 290

Conclusions 291

21 Life-History Evolution in Native and Introduced Populations 296

Robert F. Denno, Merrill A. Peterson, Matthew R. Weaver, and David J. Hawthorne

Life-History Strategy and Dispersal Ecology of Prokelisia Planthoppers 297

Geographic Distribution of the Insect and Host 298 Geographic Source of Introduced Populations 299 Genetic Variation in Native and Introduced Populations 300

Variation in Dispersal, Associated Reproductive Traits, and Voltinism 301

Genetic Basis for Geographic Variation in the Incidence of Dispersal 302

Habitat Factors Underlying Geographic Variation in Dispersal 303

Conclusions and Synthesis 305

Rapid Natural and Anthropogenic Diet Evolution: Three Examples from Checkerspot Butterflies 311
 Michael C. Singer, Brian Wee, Sara Hawkins, and Marie Butcher Checkerspot Butterflies as a Study System 311
 First Host Shift, at Schneider's Meadow 313
 Second Host Shift, at Rabbit Meadow 314
 Third Host shift, at Sonora Junction 318
 Types of Anthropogenic Effect 319
 Cryptically Anthropogenic Effects 320
 Conclusions 322

23 Conservation of Coevolved Insect Herbivores and Plants 325

Carol L. Boggs and Paul R. Ehrlich
Habitat Destruction 326
Species Introductions 327
Changes in Disturbance Regimes 329
Climate Change 329
Complex Interactions: Conservation Implications 330

INDEX 333

Conclusion 330

		• ,
		,
•		
	·	
·	·	
	·	
·	·	
·		
·		
·		
·		