NEOTYPHODIUM

IN

COOL-SEASON GRASSES

Editors Craig A. Roberts Charles P. West Donald E. Spiers

Editorial Review Board

Wayne Bailey Joan Burke Morrie Craig Tim Evans Claudia Guerber John Jennings Arthur Karr Ed Piper Charlie Rosenkrans James Williams Thomas Bultman Wayne Coblentz Richard Crawford George Garner Andrew Hopkins Robert Kallenbach Joseph Moyer Michael Richardson George Rottinghaus

Managing Editor Carrie J. Czerwonka

CONTENTS

.

.

Pr	eface		xvii
		SECTION I: CURRENT TRENDS IN NEOTYPHODIUM	
		RESEARCH AND APPLICATION	
1	Nec	otyphodium Research and Application	3
	1.1	Current Trends in the USA Henry A. Fribourg and John C. Waller	3
	1.2	Current Trends in Europe Iñigo Zabalgogeazcoa and Sylvie Bony	23
	1.3	Current Trends in New Zealand Syd Easton and Brian Tapper	35
	1.4	Current Trends in Australia K. F. M. Reed, C. J. Scrivener, K. A. Rainsford, and L. V. Walker	43
	1.5	Current Trends in Japan Koya Sugawara, Takuya Shiba, and Masayuki Yamashita	55
	1.6	Current Trends in South America Jose De Battista	65
		SECTION II: MOLECULAR BIOLOGY OF NEOTYPHODIUM	•
2	Bio C Ergo	synthesis of Ergot and Loline Alkaloids Christopher L. Schardl and Daniel G. Panaccione ot Alkaloids	75 75
	Loli	ne Alkaloids	82
3	Mo	lecular and Genetic Analysis of Lolitrem and Peramine	

	Biosynthetic Pathways in Epicnice Jestucae	
	Barry Scott, Carolyn Young, Aiko Tanaka, Michael Christensen,	
	Brian Tapper, and Gregory Bryan	
	Endophyte Synthesis of Bioprotective Metabolites	
,÷	Epichloë festucae as a Model Experimental System for	
	Genetic Analysis of Endophytes	
	Genetics and Molecular Cloning of a Peramine Biosynthesis Gene Cluster	
	Molecular Cloning and Genetic Analysis of a Gene Cluster for Paxilline	
	Biosynthesis	
	Molecular Cloning and Genetic Analysis of a Gene Cluster for Lolitrem	•
	Biosynthesis	
	•	

4	Gene Discovery and Microarray-Based Transcriptome Analysis	
	of the Grass-Endophyte Association	103
	German C. Spangenberg, Silvina A. Felitti, Kate Shields, Marc Ramsperger,	
	Pei Tian, Eng Kok Ong, Daniel Singh, Erica Logan, and David Edwards	
	Biology of Grass-Endophyte Symbioses	103
	Fungal Genomics	104
	Gene Discovery in Epicholoë-Neotyphodium Endophytes	107
	Discovery of EST-Derived SSR and SNP Markers	109
	Fungal Transcriptomics	110
	Microarry-Based Transcriptome Analysis	115

5	Molecular Genetic Marker-Based Analysis	
	of the Grass-Endophyte Symbiosis	
	Eline van Zijll de Jong, Kevin F. Smith, German C. Spangenberg, and John W. Forster	
	Development and Characterization of SSR Systems	125
	Analysis of Intraspecific Genetic Diversity	
	Phylogenetic Analysis	
	Co-Genotyping of Grass-Endophyte Symbioses	133

SECTION III: ECOLOGY AND AGRONOMY

6	A Hierarchical Framework for Understanding the Ecosy	ystem
	Consequences of Endophyte–Grass Symbioses	141
	Marina Omacini, Enrique J. Chaneton, and Claudio M. Ghersa	
	A Hierarchical Approach to Endophyte Impacts on Ecosystem Functioning	
	Endophyte Effects at the Host Plant Level	
	Endophyte-Driven Dynamics at the Neighborhood Level	
	Endophyte Impacts on Community-Level Dynamics	
	Future Challenges	
、 7	Biotic Responses in Endophytic Grasses	
•	Alison J. Popay and Stacy A. Bonos	
	Biotic Responses in Wild Grasses	164
	Invertebrate Responses in Forage and Turf Grasses	
	Plant Pathogen Responses in Turf and Forage Grasses	172
	Multitrophic Interactions	
	Factors Affecting Biotic Responses	
	0,	
8	Abiotic Stresses in Endophytic Grasses	
-	D. P. Malinowski, D. P. Belesky, and G. C. Lewis	
	Drought Stress	
	Light Stress	
	Mineral Stress	
	Novel Endophytes and Abiotic Stress Tolerance in Cool-Season Grasses	

9	Growth and Management of Endophytic Grasses	
	in Pastoral Agriculture	
	David E. Hume and David J. Barker	
	Endophyte Contamination in Pastures	202
	Sources of Contamination with Toxic Endophyte-Infected Perennial	
	Ryegrass and Tall Fescue	209
	Factors to Consider in Selecting the Right Endophyte Option	218
	·	
	SECTION IV: ANIMAL TOXICOSES	
10	Managing Ryegrass–Endophyte Toxicoses	229
	Lester R. Fletcher	
	Confirming the Safety and Animal Productivity on AR1 Pastures	229
	Ryegrass Staggers in the Absence of Lolitrem B	230
	Managing Risk	233
	Minimizing the Impact of Endemic Endophyte in Grazing Systems	233
11	Interaction between Thermal Stress and Fescue Toxicosis:	
	Animal Models and New Perspectives	243
	Donald E. Spiers, Tim J. Evans, and George E. Rottinghaus	
	Relationship between Fescue Toxicosis and Environmental Conditions	243
	Thermoregulatory Terminology	244
	Animal Models and Control System Terminology	247
	Application of Animal Models to Fescue Toxicosis	248
	Short-Term Responses: Bovine and Rodent Models	250
	Long-Term Responses: Bovine and Rodent Models	255
	Use of Bovine and Rodent Models to Evaluate New Approaches to Reduce	
	the Impact of Fescue Toxicosis on Thermoregulatory Ability	260
	ຄ	
12	Absorption of Ergot Alkaloids in the Ruminant	
	Nicholas S. Hill	
	Structure of Ereot Alkaloids	
	Drug Absorption in Monogastrics	274
	Partitioning Coefficients	276
	Ruminal Metabolism and Absorption of Ergot Alkaloids	282
13	Pathophysiologic Response to Endophyte Toxins	291
	Jack W. Oliver	
	Clinical Signs/Syndromes	291
	Physiological Manifestations of Endophyte Toxicosis	293
14	Integrating Genetics, Environment, and Management	
	to Minimize Animal Toxicoses	305
	John A. Stuedemann and Dwight H. Seman	
	Impact of Endophyte-Infested Tall Fescue on Animal Response	
	Strategies for Reducing or Alleviating the Effects of Endophyte-Infested Fescue	308
	The Role of Producer Expectations or Goals	
	•	

SECTION V: TECHNOLOGY TRANSFER AND QUALITY ASSURANCE

15	5 Endophytes in Forage Cultivars	
	Joe Bouton and Syd Easton	
	Endemic Situation in Tall Fescue	
	Endemic Situation in Perennial Ryegrass	
	Reinfection of Elite Cultivars with Novel Endophytes	
	Technical Requirements during Development and Commercialization	
	of Endophytes	
	Future	
16	Endophytes in Turfgrass Cultivars Leah A. Brilman	341
	Endophyte Benefits for Turf	
	Challenges in Implementing Endophytic Benefits in Turf	
	Future Research and Direction	
17	Endophytes, Quality Assurance, and the Seed Trade	
	in Eastern Australia	351
	W. M. Wheatley	
	Perennial Ryegrass	
	Tall Fescue	
	Spread of Endophyte	
	Endophyte Viability in Seed	
	Government Policy and Endophytes	
	Endemic Endophyte in Seed Lines	
	Selected Endophytes	
	Packaging and Storage of Seed with Endophytes	
	Endophyte-Free Seed	
	Producer Expectations	
	Seed Industry	
10	Public Education on Tall Econya Tavigasia	261
10	Craig Roberts and John Andrae	
	Co-Workers and Cow-Workers: What Do Specialists Recommend, and What	
	Will Producers Adopt?	
	The Witch's Brew	
	Proposed Educational Approaches	

ļ