Stochastic Calculus of Variations in Mathematical Finance

Contents

1	Gaussian Stochastic Calculus of Variations		
	1.1	Finite-Dimensional Gaussian Spaces,	
		Hermite Expansion	
	1.2	Wiener Space as Limit of its Dyadic Filtration	5
	1.3	Stroock-Sobolev Spaces	
		of Functionals on Wiener Space	
	1.4	Divergence of Vector Fields, Integration by Parts	
	1.5	Ito's Theory of Stochastic Integrals	.15
	1.6	Differential and Integral Calculus	
		in Chaos Expansion	
	1.7	Monte-Carlo Computation of Divergence	.21
2	Co	mputation of Greeks	
	and	Integration by Parts Formulae	25
	2.1	PDE Option Pricing; PDEs Governing	
		the Evolution of Greeks.	25
	2.2	Stochastic Flow of Diffeornorphisms;	
		Ocone-Karatzas Hedging	
	2.3	Principle of Equivalence of Instantaneous Derivatives	.33
	2.4	Pathwise Smearing for European Options.	.33
	2.5	Examples of Computing Pathwise Weights v	35
	2.6	Pathwise Smearing for Barrier Option	.37
3	Ma	arket Equilibrium and Price-Volatility Feedback Rate	41
	3.1	Natural Metric Associated to Patliwise Smearing	41
	3.2	Price-Volatility Feedback Rate.	42
	3.3	Measurement of the Price-Volatility Feedback Rate	45
	3.4	Market Ergodicity	
		and Price-Volatility Feedback Rate	46
		-	

37	a , ,
X	Contents

4	Multivariate Conditioning			
	and	Regularity of Law 49	1	
	4.1	Non-Degenerate Maps)	
	4.2	Divergences	_	
	4.3	Regularity of the Law of a Non-Degenerate Map	j	
	4.4	Multivariate Conditioning		
	4.5	Riesz Transform and Multivariate Conditioning)	
	4.6	Example of the Umvariate Conditioning		
5	Noi	n-Elliptic Markets and Instability		
	in I	HJM Models 65		
	5.1	Notation for Diffusions o n 1 ")	
	5.2	The Malliavin Covariance Matrix		
		of a Hypoeliiptic Diffusion •	1	
	5.3	Malliavin Covariance Matrix		
		and Hormander Bracket Conditions		
	5.4	Regularity by Predictable'Smearing)	
	5.5	Forward Regularity		
		by an Infinite-Dimensional Heat Equation)	
	5.6	Instability of Hedging Digital Options		
		in HJM Models	3	
	5.7	Econometric Observation of an Interest Rate Market	,	
6		ider_Trading		
	6.1	A Toy Model: the Brownian Bridge	1	
	6.2	Information Drift and Stochastic Calculus		
		of Variations)	
	6.3	Integral Representation		
		of Measure-Valued Martingales 81		
	6.4	Insider Additional Utility. 83		
	6.5	An Example of an Insider Getting Free Lunches	1	
7	Asy	ymptotic Expansion and Weak Convergence 87	7	
	7.1	Asymptotic Expansion of SDEs Depending		
		on a Parameter		
	7.2	Watanabe Distributions and Descent Principle. 89	9	
	7.3	Strong Functional Convergence of the Euler Scheme 90)	
	7.4	Weak Convergence of the Euler Scheme	3	
8	Sto	ochastic Calculus of Variations for Markets with Jumps . 97		
	8.1	Probability Spaces of Finite Type Jump Processes. 98	8	
	8.2	Stochastic Calculus of Variations		
		for Exponential Variables)	
	8.3	Stochastic Calculus of Variations	_	
		for Poisson Processes 100)	

		Contents	XI
	8.4 Mean-Variance Minimal Hedging and Clark-Ocone Formula		104
A	Volatility Estimation by Fourier Expansion A.I Fourier Transform of the Volatility Functor A.2 Numerical Implementation of the Method		109
В	Strong Monte-Carlo Approximation of an Elliptic Market B.I Definition of the Scheme ^ B.2 The Milstein-Scheme B.3 Horizontal Parametrization B.4 Reconstruction of the Scheme ,5^		116 117 118
C	Numerical Implementation		
	of the Price-Volatility Feedback Rate		123
Re	ferences		127
In	dex		.139