

by

D. VANBEVEREN

Astrophysical Institute, Vrije Universiteit Brussel, Belgium Institute of Technology Louvain, Leuven, Belgium

W. VAN RENSBERGEN

Astrophysical Institute, Vrije Universiteit Brussel, Belgium

and

C. DE LOORE

Astrophysical Institute, Vrije Universiteit Brussel, Belgium

KLUWER ACADEMIC PUBLISHERS

DORDRECHT / BOSTON / LONDON

Table of contents

Table of contents	1
Introduction	8
List of abbreviations	10
Constants	12
Chapter I: MASSIVE STARS	13
1. Definition	13
2. General observations	13
2.1. The HR diagram of massive stars with spectral type O3 - M5	15
2.1.1. The effective temperature and bolometric correction of	
massive stars	15
2.1.2. The absolute visual magnitude $M_{\rm v}$ of massive stars	18
2.1.3. The spectral type - luminosity class - M_{bol} - T_{eff} - (B-V)	
calibration of massive stars	19
2.2. The stellar wind of massive OB type stars	26
2.3. The chemical abundances in massive OBA type stars	31
2.4. Rotational properties of OB type stars	32
2.4.1. 'Normal' OB type stars	34
2.4.2. OBe type stars	35
2.5. LBVs	36
2.6. YSGs, RSGs and hypergiants	38
2.7. The WR stars	39
2.8. Circumstellar shells around massive stars	42
2.9. The SN explosion of a massive star	43
2.10. Summary	47
Chapter II: MASSIVE SINGLE STARS	49
3. The equations of stellar structure of a non-magnetic, non-rotating	
single star	49
3.1. The continuity of mass	50
3.2. The physical state of the plasma	50
3.2.1. Hydrostatic equilibrium	50

	3.2.2.	Non-degeneracy and degeneracy: definition	51
	3.2.3.	The equation of state of a non-degenerate plasma	51
	3.2.4.	The equation of state of a degenerate plasma	52
	3.2.5.	The Chandrasekhar mass limit of degenerate stars	53
	3.2.6.	Neutron star masses	54
	3.3. The	energy equation	55
	3.3.1.	The energy generation rate by nuclear reactions ϵ	55
	3.3.2.	The gravitational energy generation	59
	3.4. Ene	rgy transport	60
	3.4.1.	Radiative energy transport	60
	3.4.2	Convective energy transport and mixing	61
	3.4.3.	The boundary between convective and radiative layers	63
	3.5. The	time-variation of mass in evolutionary computations	65
	3.6. Sun	nmary	66
	3.7. Sur	face layers - Boundary conditions	67
4.	Evolutio	nary computations of non-rotating massive single stars	70
	4.1. Sma	all convective core overshooting	71
	4.1.1.	The evolution of single stars with 5 $M_o \le M \le 12 M_o$	71
	4.1.2.	The evolution of single stars with M > 12 M_o	76
	4.2. The	e effect of large convective core overshooting	85
5.	Compar	ison between observations and evolutionary computations of	
	non-rota	ting single stars	87
	5.1. Evo	olutionary computations with small convective core	
	ove	ershooting	87
	5.1.1.	The core hydrogen burning phase	87
	5.1.2.	The position of the RSGs and WR stars in the HR diagram	93
	5.1.3.	The progenitor of SN 1987A	94
	5.1.4.	The progenitor of SN 1993J	95
	5.1.5.	The overall SN morphology of massive single stars	95
	5.1.6.	The Blue Hertzsprung Gap (BHG)	96
	5.1.7.	Chemical abundances in early B type supergiants	96
	5.1.8.	The distribution of RSGs in the SMC	97
	5.1.9.	Comparison between theoretical prediction of degenerate	
		stars and observations	98
	5.2. Lar	ge convective core overshooting: is there a need?	100
6	The offer	et of rotation on the evolution of massive single stars	101

6.1. Rotation-induced mixing in massive stars	101
6.2. Evolutionary computations of rotating stars	103
6.3. Comparison to observations	104
6.4. Summary	105
Chapter III: MASSIVE CLOSE BINARIES	106
7. General	106
8. The Roche model	106
8.1. Circularization and synchronization	107
8.2 Roche equipotentials	108
8.3. The Roche lobe overflow process	110
8.4. Limitations of the Roche model	111
8.5. The mass loss rate of the mass loser during the RLOF	111
8.6. The different types of unevolved massive close binaries	113
9. The mass transfer process during RLOF	116
9.1. Direct hit versus the formation of a Keplerian disc	116
9.2. The spin-up of the mass gainer due to mass transfer	117
9.3. Computation of the evolutionary behaviour of a mass gainer	118
9.3.1. The standard accretion model	120
9.3.2. The accretion induced full mixing model	12 3
10. The evolution of the binary period in MCBs	124
10.1. One or both components are losing mass by stellar wind only.	124
10.2. The variation of the period during RLOF	125
10.2.1. The RLOF mass loss dominates over a possible SW mass	
loss	126
10.2.1.1. Conservative RLOF	126
10.2.1.2. Non-conservative RLOF	127
10.2.1.3. Mergers	131
10.2.2. The RLOF and the SW mass loss rates are comparable	132
11. The effect of the supernova explosion of one of the components $\ \dots \dots$	132
12. Evolutionary computations of massive close binaries	137
12.1. The evolution of the primary before and during its RLOF	139
12.1.1. Massive primaries with initial mass \leq 40-50 M_o : case B_r	
with q > 0.2	139
12.1.2. Massive primaries with initial mass \leq 40-50 M _o : case B _r	
with $a \le 0.2$ case B and case C	145

12.1.3. Massive primaries with initial mass $\leq 40-50 \text{ M}_{o}$: case A	
12.1.4. Very massive primaries	
12.1.5. The binary after RLOF: a CHeB+OB binary or a merger?	
12.2. The evolution of the primary after RLOF: CHeB+[OB or low	
mass companion] binaries	
12.2.1. The mass of the CHeB component \geq 5 M_o	
12.2.2. The mass of the CHeB component $< 5 M_o$	
12.2.3. The final fate of primaries of MCBs	
12.3. The evolution of the secondary in a MCB	
12.4. The formation and evolution of contact binaries	
12.5. The evolution of a MCB after the collapse of the core of the	
primary	
12.6. The effect of rotation on the evolution of a MCB	
12.6.1. The primary	
12.6.2. The secondary	
13. Massive binaries: observations	
13.1. Massive OBA+OBA binaries	
13.1.1. Pre-RLOF OBA+OBA MBs	
13.1.2. Massive OBA+OBA binaries during or after RLOF	
13.2. WR+OB binaries	
13.3. X-ray binaries	
13.3.1. High mass X-ray binaries (HMXB).	
13.3.1.1. HMXBs with an OBe type optical component	
13.3.1.2. Standard HMXBs	
13.3.1.3. HMXB candidates with a WR type component	
13.3.2. Low mass X-ray binaries (LMXB) with a MCB history	
13.3.3. The formation of X-rays with energies $\geq 1 \text{ keV}$	
13.4. Radio pulsars	
13.4.1. General	
13.4.2. Binary radio pulsars	
13.5. Massive star runaways	
13.5.1. OB type runaways	
13.5.2. Runaways other than OB type runaways	
14. Comparison between the predicted evolution of MCBs and	
observations	

14.1. The binaries HD 163181, HD 12323, HD 14633, HD 193516,
HD25638, HD 209481, Φ Per and υ Sgr
14.2. WR+OB binaries
14.2.1. WR+OB systems where RLOF/mass transfer did not
occur
14.2.2. WR+OB systems where RLOF/mass transfer did occur:
V 444 Cyg
14.2.3. WR stars with a less luminous OB type companion
14.2.4. WR stars with a normal low mass companion
14.2.5. Late O/early B type stars with a (too) faint WR type component
14.3. The formation of carbon enhanced OB type stars
14.4. The descendants of CHeB+OB binaries
14.4.1. HMXBs with an OB-type component: Vela X-1, Wray 977,
Cyg X-1
14.4.2. The OB type runaways ζ Oph and ζ Pup
14.4.3. Critical remarks
14.5. The descendants of OB+cc binaries: the CHeB (WR)+cc
candidates HD 50896, HD 197406 and Cyg X-3
14.5.1. The formation of X-rays in WR+cc binaries
14.5.2. The X-ray opacity in the wind in HMXBs
14.5.3. The expected X-rays in WR+cc binaries
14.5.4. The formation of WR stars with a cc in their center
14.6. The evolution of LMXBs: evidence for MCBs with very low
mass ratio
14.7. SN-type of a MCB component: SN 1987A
14.8. Summary: the overall MCB evolutionary model
Chapter IV: MASSIVE STAR POPULATION NUMBER SYNTHESIS
15. General
16. Observations used as input in a population model
16.1. The initial mass function (IMF)
16.2. The IMF of starburst regions
16.3. The IMF of massive single stars and of primaries of MCBs
16.4. The overall MCB frequency in the solar neighbourhood

16.5. The observed mass ratio and period distribution of pre-RLOI	4
MCBs in the solar neighbourhood	
16.5.1. The observed mass ratio distribution	
16.5.1.1. Method of determination	
16.5.1.2. O-type primaries	
16.5.1.3. B-type primaries	
16.5.2. The observed period distribution	
16.5.3. The implications of selection effects	
16.6. The runaway velocities of single pulsars	
17. The observations which need to be reproduced by a massive star	
population model	
17.1. The B/R, WR/O and WC/WN number ratios	
17.1.1. Continuous star formation regions	
17.1.2. Starburst regions	•
17.2. WR+OB binaries	
17.2.1. The WR+OB frequency	
17.2.2. The q and P distribution of WR+OB	
17.3. O-type runaways	
17.4. The number of WR stars with a compact companion	
17.5. The radio pulsar population	
17.5.1. Solitary radio pulsars with a binary history	•
17.5.2. The formation rate of double neutron star systems in the	9
Galaxy	•
17.6. The SN rate	
18. The population number synthesis (PNS) model	•
18.1 The overall evolutionary model of single stars and MCBs	
18.1.1. Single stars	
18.1.2. MCBs	
18.2. Method of computation	
18.3. The parameters of the PNS model	
19. PNS model calculations	
19.1. The expected evolution of the observed galactic WR+OI	3
sample	
19.2. The predicted distribution of stars in regions of continuous sta	r
formation with a realistic binary formation frequency	

19.2.1. The large number of stars observed in the Blue	
Hertzsprung Gap (BHG)	303
19.2.2. The distribution of O-type stars predicted by the PNS	
model	304
19.2.3. The WR population	307
19.2.4. The early B-type star population predicted by the PNS	
model	314
19.2.5. The theoretically expected number of binary pulsars	316
19.2.6. The theoretically expected number of single pulsars with a	
MCB history	319
19.2.7. The runaway velocity of single pulsars	319
19.3. The predicted distribution of stars in starburst regions with a	
realistic binary formation frequency	320
19.3.1. The population of B3-B0 type rapid rotators in starbursts	322
19.3.2. The population of O and WR type stars in starbursts	322
19.3.3. The population of RSGs and WR type stars in starbursts	326
19.3.4. Cooking recipe	327
19.4. The predicted SN type $I_{b,c}$ /type II ratio in regions of	
continuous star formation with a realistic binary formation	
frequency	328
Concluding remarks	330
References	331
Index	343