Willi Gujer

Systems Analysis for Water Technology

Content

1	Introduction 1				
	1.1	Goal and Content of This Text	1		
2	Mod	Modeling and Simulation			
	2.1	System, Model, Simulation	5		
	2.2	Models in Natural and Engineering Sciences	6		
	2.3	Types of Mathematical Models	6		
	2.4	Systems Analysis	8		
	2.5	Calibration, Validation, and Verification 1	0		
	2.6	•	. 1		
	2.7	Simulation 1	2		
	2.8	Components of a Model 1	3		
		2.8.1 Structural Components of a Mathematical Model	3		
		2.8.2 Case Study 1	9		
	2.9	Dimensions and Units	21		
3	Syste	m Boundaries and Material Balances	23		
	3.1	System Definition	23		
	3.2	•	25		
	3.3	÷	26		
		-	26		
		-	27		
		3.3.3 Reaction, Production, and Consumption	29		
		· · · · ·	30		
	3.4	*	33		
			33		
			35		
		2	37		
	3.5	Summary	39		

4	Tran	sport Processes	1
	4.1	Characterization of Transport Processes 44	2
	4.2	Modeling of Transport Processes	3
		4.2.1 Advection	3
		4.2.2 Sedimentation	
		4.2.3 Random Walk	
		4.2.4 Molecular Diffusion	
		4.2.5 Turbulent Diffusion	
		4.2.6 Dispersion	
		4.2.7 Numeric Dispersion	
		4.2.8 Convection	
		4.2.9 Mass Transfer Coefficients	-
5	Tran	sformation Processes	7
	5.1	Case Study	7
	5.2	Transformation Written in Conventional Form	
	5.3	Stoichiometric Matrix	
	5.4	Kinetics	
	••••	5.4.1 Temperature Effects	6
	5.5	State Variables	
	5.6	Composition of Materials	0
	5.7	Conservation Laws	2
		5.7.1 Conservation Law for Several Processes	
		5.7.2 Charge Balance	95
		5.7.3 Theoretical Oxygen Demand	
	5.8	Summary	
6	Idea	Reactors)1
	6.1	Overview of Ideal Reactors 10)1
	6.2	The Batch Reactor 10)2
	6.3	The Continuous Flow Stirred Tank Reactor (CSTR) 10)5
	6.4	A Cascade of Stirred Tank Reactors	
	6.5	The Plug-Flow Reactor 11	
	6.6	Plug-Flow Reactor with Turbulence 11	4
	6.7	Sequencing Batch Reactor 12	
	6.8	Completely Mixed or Plug-Flow Reactor? 12	27
	6.9	Summary	
7	Hyd	aulic Residence Time Distribution	29
	7.1	RTD: A Spectrum of Retention Times 13	30
	7.2	Characterization of Residence Time Distributions 13	33
	7.3	Experimental Determination of an RTD 13	34
		7.3.1 Tracer Substances 13	34
		7.3.2 Experimental Procedure 13	35

.

Content

	7.4	Resider	ce Time Distributions of Ideal Reactors	143		
		7.4.1	RTD of a Stirred Tank Reactor (CSTR)	143		
		7.4.2	Cascade of Stirred Tank Reactors	145		
		7.4.3	Plug-Flow Reactor	148		
		7.4.4	Plug-Flow Reactor with Turbulence	150		
		7.4.5	Numeric Simulation of Turbulence			
			in a Plug-Flow Reactor	155		
	7.5	Reactor	Combinations	159		
	7.6	RTD w	ith Stochastic Models	159		
		7.6.1	Stochastic Model of a Cascade			
			of Stirred Tank Reactors	160		
		7.6.2	Stochastic Model of Turbulence	161		
8	Mode	ling of F	Real Reactors	165		
	8.1	Goal		165		
	8.2	Time of	f Mixing	166		
	8.3	Method	ls for Model Identification	168		
		8.3.1	Method of Moments			
		8.3.2	Adjustment of the Model to the Measurements	170		
	8.4	Case St	tudy			
9	Heterogeneous Systems					
	9.1		ication of Processes and Systems			
	9.2		hase Systems			
		9.2.1	Microbial Degradation of Stored Pollutants			
	9.3	Behavi	or of Individual Particles	182		
	9.4					
		9.4.1	Transformation Processes in a Sewer	184		
		9.4.2	Activated Sludge Flocs	187		
		9.4.3	Self-purification in a Brook	189		
		9.4.4	Gas Exchange in a Stirred Tank Reactor			
		9.4.5	Adsorption in an Activated Carbon Column			
10	Dyna	Dynamic Behavior of Reactors				
	10.1	Causes	of the Dynamics	212		
	10.2	Adjustr	ment to Step Changes in Load	214		
	10.3	Periodi	c Load Variation	217		
		10.3.1	Stirred Tank Reactor	217		
		10.3.2	Cascade of Stirred Tank Reactors	221		
		10.3.3	Plug-Flow Reactor	222		
		10.3.4	Bode Diagram			
		10.3.5	Stochastic Processes			
		10.3.6	Dynamic Operation of Plants	226		

of Time Constants	229
Residence Time of Individual Materials	229
erent Time Constants	232
y Effluent in Sewers	234
Measurement Uncertainty	237
rom Descriptive Statistics	237
lytical Characterization of the Distribution	
feasured Values	238
birical Characterization of Measured Values	239
ystems	241
Incertainty	243
ss Measurement Errors	243
dom Measurement Error	245
ematic Measurement Errors, Bias	248
le: COD Measurement (Standard Curve)	250
In Error Model	251
Systematic Measurement Errors	253
cation, Sensitivity and Error Propagation	257
lentification	257
lentification ic Principles, Chi Square, χ^2	258
e Example: First-Order Reaction	
Batch Reactor	261
of an Extended Case Study	263
nd Identifiability	266
e Study	266
al Sensitivity Functions	269
ture	274
ctural Model Deviations	275
ple Test Procedures	277
ncertainty	281
oretical Background	282
lication to the Case Study	288
Propagation	291
ics	291
lication to the Case Study	294
ror Propagation	296
te Carlo Simulation	296
pling Methods	300
lication to the Case Study	308
arameter Values: A Word of Caution	311
Model Identification	

13	Proce	ss Control Engineering 31	
	13.1	Examples of Operating Strategies 31	
		13.1.1 Adjusting the Water Temperature of a Shower	16
		13.1.2 Operation of an Activated Sludge System	16
		13.1.3 Summary 31	17
	13.2	Control Path and Control Loop 3	18
	13.3	Step Response of a Subsystem 32	21
	13.4	Step Response of a Controlled System	26
		13.4.1 Controlled Systems Without Delay	26
		13.4.2 Controlled Systems with Delay 32	27
		13.4.3 Controlled Systems with Dead Time 33	30
	13.5	Characteristic Curves of a Controlled System	31
	13.6	The Standard Automatic Controller	32
		13.6.1 The Two-Position Controller	
		(A Discontinuous Controller)	33
		13.6.2 Continuous Automatic Controllers	35
		13.6.3 Comparison of the Standard Controllers	44
		13.6.4 Implementation of a PID Controller	
		in Berkeley Madonna 34	44
		13.6.5 Disturbance Variable Compensation	
		13.6.6 Optimal Adjustment of a PID Controller	46
	13.7	Case Study: Control of Oxygenation	
		in an Activated Sludge Plant 34	48
		13.7.1 Task	48
		13.7.2 System Performance Without Control 35	50
		13.7.3 Parameters of a PID Controller 35	50
	13.8	Fuzzy controllers	55
		13.8.1 Example of a Fuzzy Controller	56
		13.8.2 Why Fuzzy Control?	59
14	Time	Series Analysis	61
	14.1	Time Series	61
	14.2	Stationary Time Series	62
	14.3	Case study: Yearly Variation of the Temperature 30	
	14.4	Conventional Statistical Characterization	64
	14.5	Moving Average	65
		14.5.1 Arithmetic Moving Average	66
		14.5.2 Geometric Moving Average	67
	14.6	Trend Lines	
	14.7	Removing a Trend	72
		14.7.1 Correcting for the Average Value	
	14.8	Logistic Growth	
	14.9	Discrete Fourier Transformation	

	14.10	Autocorrelation, AR(1) Model	378
		14.10.1 Autoregressive Models	
		14.10.2 Summary on AR(1) models	384
		14.10.3 Identification of an AR(1) model	
	14.11		
		14.11.1 Task, Question	
		14.11.2 Procedure	388
		14.11.3 Trend Line	389
		14.11.4 Fourier Transformation	389
		14.11.5 Analysis of the Residuals: AR(1) Model	391
		14.11.6 Synthesis	393
15		n under Uncertainty	
	15.1	Dealing with Uncertainty	
	15.2	Variation and Uncertainty	
	15.3	Case Study	
		15.3.1 Task	
		15.3.2 Variation	
		15.3.3 Uncertainty	
		15.3.4 Representation of Variation and Uncertainty	
		15.3.5 Deterministic Design	
		15.3.6 Uncertainty-Based Design	
		15.3.7 Operational Experience and Retrofitting of the Plant	
		15.3.8 Critique of the Design Procedures	
	15.4	Second-Order Uncertainty	420
16	Drohl	ems	123
10	16.1	Composition Matrix and Conservation Equation	
	16.2	Conservation of TOD	
	16.3	Breakpoint Chlorination: Stoichiometry and Composition	
	16.4	Deriving a Stoichiometric Matrix	
	16.4	Mass Balance in the Steady State	
	16.5	Ideal Reactors, Chemostats	
	16.7	Ideal Reactors, Chemostats	
	16.8	Ideal Reactors, Sampling in Turbulent Flow	
	16.9	Ideal Reactors, Disinfection	
		Ideal Reactors, SBR	
	16.10	Residence Time Distribution, Cascade of CSTRs	430
		RTD, Reactor Model	
		RTD, Activated Sludge Tank	
		RTD, Flow Rate and Dispersion in a Sewer	
	16.15	Modeling a Sewer	434
		RTD, Disinfection Reactor	
		RTD, Additivity of τ_m and σ^2	
	16.18	RTD, Turbulent Plug-Flow Reactor	434

Content

1

ł

16.19	Heterogeneous Systems: Filtration	435
16.20	Substrate Profiles in a Biofilm	435
16.21	Bode Diagram	437
	Dynamic Nitrification	
16.23	Nonstationary Flow in Sewers	438
16.24	Stochastic Measurement Error	439
	Systematic Measurement Error	
16.26	Sensitivity and Parameter Identification	442
16.27	Sensitivity	443
16.28	Error Propagation with Correlated Uncertainty	443
16.29	System Identification	444
16.30	Uncertainty, Error Propagation	447
16.31	Process Control, Two-Position Controller	447
16.32	Process Control, PID Controller	448
16.33	Time Series Analysis	449
16.34	Design under Uncertainty, Nitrification	450
16.35	Integrated Problem: Nitrification in an RBC	452
16.36	Integrated Problem: Analyzing a Fish Pond	455
Literature.		457
Index		

.