UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY Methods and Models for Decision Support

CHRISTOPH WEBER

University of Stuttgart, *Institute for Energy Economics and Rational of Use of Energy*

fyj. Springer

Contents

CONTENT	ΓS	VII
LISTOFF	IGURES	XIII
LIST OF T	ABLES	XIX
PREFACE		XXI
ACKNOW	LEDGMENTS	XXIII
Chapter	1	
INTRODU		1
Chapter	2	
-	LATION AND MARKETS IN THE ELECTRICITY INDUSTRY	3
1.	Status of deregulation	4
2.	Power and related markets in continental Europe	
Chapter	3	
-	N MAKING AND UNCERTAINTIES IN THE ELECTRICITY	
IND	DUSTRY	11
1.	Decision problems in the electricity industry	11
2.	Uncertainties in the electricity industry	
2.1	Market prices for primary energy carriers	
2.2	Product prices for electricity	
2.3	- · · · · · · · · · · · · · · · · · · ·	
2.4		
2.5	Demand growth	
2.6	Technology development	
27	Regulatory and political uncertainties	

3. For	mal framework	. 22
3.1	Formulating decision problems under uncertainty	22
3.2	Describing uncertain parameters	.24
3.2.1	Random variables	24
3.2.2	Stochastic processes	26
3.3	Models for decision support under uncertainty	.26
3.4	Measuring model quality	.27
Chapter 4		
	ELECTRICITY PRICES	31
1. Fur	ndamental models	32
1.1	Basic model: cost minimization under load constraint and	
	merit order	32
1.2	Transmission constraints	35
1.3	Hydro plants	
1.4	Start-up costs and minimum operation/shut-down time	
1.5	Reserve power markets	
1.6	Implications and challenges	
2. Fin	nance and econometric models	
2.1	Basic models	40
2.1.1	Geometric Brownian motion	40
2.1.2	Mean-Reversion models	42
2.1.3	Jump-Diffusion models	43
2.2	Deterministic and cyclical effects	44
2.3	Advanced stochastic models	45
2.3.1	ARMA models	45
2.3.2	GARCH models	46
2.3.3	Mixture distributions	48
2.3.4	Markov regime switching	50
2.3.5	Transformed diffusion model	53
2.3.6	Multifactor models	54
3. Int	tegrated modeling approach	. 56
3.1	Primary energy prices: stochastic model	57
3.2	Electricity prices: fundamental model	60
3.3	Electricity prices: stochastic model	65
4. Ap	pplication	73
Chapter 5		
_	COMPETITION IN THE ELECTRICITY INDUSTRY	79
1. Co	ompetition on the wholesale market: Cournot-Nash	
	mpetition and competition with bid curves	79
	ompetition on the retail market: Bertrand competition and	
	mpetition with heterogeneous products	80

Detailed Contents ix

2.1	Methodological approach - basic model with one retail	
	market	81
2.2	Methodological approach - extension to several retail	
	segments	85
2.3	Analytical results - attractiveness of various market	
	segments	
3.	Application	
3.1	Market description	
3.2	Results	93
Chapter	6	
-	ING GENERATION AND TRADING PORTFOLIOS	97
1.	Technical elements for production scheduling	98
1.1	Fuel consumption and capacity restrictions for	
	conventional power plants and boilers	99
1.2	Start-up, shut-down and ramping constraints	
1.3	Back-pressure steam turbines	
1.4	Extraction condensing steam turbine	
15	Gas turbine and gas motor	
2.	System-wide restrictions and objective function	
2.1	Balance of supply and demand	
2.2	Objective function.	
2.3	Problem structure and possible simplifications	110
3.	Separable optimization with uncertain prices - real option	
	model	114
3.1	Basic models	114
3.2	Thermal power plants as path-dependent American	
	options	116
	3.2.1 Model of Tseng and Barz	116
	3.2.2 Use of lattices generated from Monte-Carlo	
	simulations	121
	3.2.3 Adaptation to day-ahead-trading markets	124
4.	Two-stage optimization problem in day-ahead markets	
	including CHP	126
5.	Longer-term portfolio management	128
6.	Application	
6.1	1	135
	6.1.1 Thermal power plants without cogeneration	135
	6.1.2 Cogeneration system	136
6.2	1 11	
6.3	C 1	
6.4	Longer Term Portfolio Management	143

Chapter	7	
Chapter	/	

RISK MA	NAGEMENT AND RISK CONTROLLING	149
1. Ty	ypology of risks	150
1.1	Market risks	150
1.2	Other external risks	151
1.3	Internal risks	152
2.	Aggregate risk measures	152
2.1	Value at risk	152
2.2	Alternative concepts for market risk	154
2.3	Alternative statistical risk measures	155
2.4	Integral earnings at risk	156
3.	Integral earnings at risk and risk management strategies in	
	incomplete electricity markets.	158
4.	Price models for risk controlling.	
4.1	Multivariate GARCH models	169
4.2	Multivariate models with regime switching	
5.	Power plant models for risk quantification	178
5.1	Delivery risk - including analytical model for CHP	
	valuation	
5.2	Short-term risk risk	181
6.	Application.	
6.1	Computation methodology	
6.2	· · · · · · · · · · · · · · · · · · ·	
6.3		
(5.3.1 Delivery risk	187
	Short-term risk	191
(6.3.3 Integral earnings at risk	193
Chapter	8	
TECHNO	LOGY ASSESSMENT - WITH APPLICATION TO FUEL CELLS	195
1. A	nalysis of the state of the art	196
2.	Technology developments in the middle and longer term	199
2.1	Upscaling and hybrid systems	199
2.2	Use of solid fuels	202
2.3	Multistage system concepts	203
3.	Cost development.	204
3.1	Learning and experience curves - conceptual basis	
3.2	Experience curves as a forecasting tool	207
3.3	Dependency of the experience curves on the developme	
	stage	208
3.4	Ex-post observations of cost reductions for stationary fu	ıel
	cell systems.	209

Detailed Contents

хi

3.5	Projection of experience curves for different technolog	-•
	lines	211
4.	Assessment of context factors and resulting technology	
	potentials	
4.1	Energy demand structure	
4.2	Operation simulation	
4.	2.1 Principles of operation simulation	217
4.	Aggregated utilization potentials in Baden-	
	Wurttemberg	222
4	.2.3 Sensitivity analyses	225
5.	Identifying technology strategies	226
Chapter !	9	
	ENT DECISIONS	229
1.	Static, deterministic long-term market equilibrium - the	
	concept of peak load pricing	
2.	Stochastic fluctuations in the electric load	
3.	Stochastic fluctuations in the primary energy prices	242
4.	Dynamic stochastic long-term price equilibria - a backwar	rd
	induction approach	245
4.1	Basic problem	246
4.2	Two-stage example	248
4.3	General solution approach	255
5.	Application	259
5.1	Case study analyzed	260
5.2	Results	265
CI.	10	
Chapter	10	
FINAL RI	EMARKS	271
REFEREN	ICES	275
INDEX		291