

Hans Rudolf Christen Günter Baars

Chemie

Verlag Sauerländer
Aarau • Frankfurt am Main • Salzburg

Diesterweg Verlag Frankfurt am Main

Inhaltsverzeichnis

Einleitung:				Übungen	
Stoffe	e und Stoffumwandlungen	11			
			5	Aggregatzustände	153
			5.1	Die kristalline Ordnung	153
Teil	1: Der Aufbau der Materie		5.2	Der Gaszustand	160
			5.3	Der flüssige Zustand; Lösungen	167
1	Elemente, Atome, Moleküle,		5.4	Aggregatzustandsänderungen	177
	Ionen	15		Übungen	182
1.1	Die Entwicklung der Begriffe				
	«Atom», «Molekül» und «Ion»	15			
1.2	Die Atommasse; Symbol und		Teil	II: Die chemische Reaktion	
	Formel	21			
1.3	Das Rutherford-Modell des		6	Quantitative Beziehungen	183
	Atoms	25	6.1	Das molare Volumen	183
1.4	Der Atomkern; Isotopie und		6.2	Die Bestimmung von	
_	Radioaktivität	31		Atom- und Molekülmassen	183
	Übungen	37	6.3	Stöchiometrische	
				Berechnungen	
2	Die Elektronenhülle	39		Übungen	192
2.1	Energiestufen der Elektronen	39			
2.2	Elektronen - Teilchen oder		7	Der Verlauf chemischer	
-	Welle?	46		Reaktionen	194
2.3	Das Wasserstoffatom	51	7.1	Energie und chemische	
2.4	Der Aufbau der Elektronenhülle	55	· •	Vorgänge	194
2.5	Das Periodensystem	60	7.2	Warum laufen chemische	
	Übungen	71		Reaktionen ab?	202
			7.3	Wie rasch laufen chemische	
3	Wie bilden sich Atomverbände?	73		Reaktionen ab?	209
3.1 _	Grundlagen	73	7.4	Über den Mechanismus	
3.2	Die Atombindung			chemischer Reaktionen	_
3.3	Die lonenbindung		7.5	Das chemische Gleichgewicht	
3.4	Metallische Bindung		7.6	Das Löslichkeitsprodukt	
	Übungen	109		Übungen	236
4	Beziehungen zwischen Struktur		8	Säure/Base-Reaktionen	
	und Eigenschaften	110		(«Protolysen»)	237
4.1	Molekülverbindungen	110	8.1	Die Begriffe «Säure» und	
4.2	lonenverbindungen	119		«•Base»	237
4.3	Metalle	131	8.2	Das Protolysengleichgewicht	
4.4	Festkörperverbindungen	145		im Wasser; der pH-Wert	246

Inhaltsverzeichnis

8.3	Die Stärke von Säuren und		13	Die Wasserstoffverbindungen	
	Basen	.248		(«Hydride») der Nichtmetalle	346
8.4	Säure/Base-Gleichgewichte	252	13.1	Allgemeines	346
8.5	Indikatoren und Pufferlösungen	262	13.2	Die Bildung aus den	
8.6	Die Neutralisation;			Elementen	348
	Titration von sauren und		13.3	Säure/Base-Reaktionen der	
	alkalischen Lösungen	265		Nichtmetallhydride	349
	Übungen	270	13.4	Wichtige Beispiele von	
				Nichtmetallhydriden	351
9.	Komplexreaktionen	272	13.5	Gefährdung des Wassers	360
9.1	Beispiele von Komplex-			Übungen	
•••	gleichgewichten	273			
	Übungen		14	Sauerstoffverbindungen der	
	C C C C C C C C C C C C C C C C C C C	.270	14	Nichtmetalle	200
40	De de medition en	070	444		300
10	Redoxreaktionen		14.1		200
10.1	Begriffe		440	der Halogene	308
	Beispiele von Redoxreaktionen		14.2	Oxide und Sauerstoffsäuren	270
	Redoxpotential und Redoxreihe	288	440	von Schwefel	370
10.4	Beispiele von Anwendungen	000	14.3	Oxide und Sauerstoffsäuren	274
	der Redoxpotentiale		444	von Stickstoff	3/4
	Übungen	.305	14.4	Oxide und Sauerstoffsäuren	070
			445	von Phosphor	3/8
11	Elektrochemie	.307	14.5	Kohlenstoffoxide und	000
11.1	Elektrochemische		440	Kohlensäure	
	Stromerzeugung	307		DieSilicate	390
11.2	Korrosion von Metallen	315	14.7	Boden, Dünger und	007
11.3	Die Elektrolyse	317	440	Pflanzenschutz	397
	Übungen	.328	14.8	Nichtmetallverbindungen als	400
				Schadstoffe in der Luft	
				Übungen	411
Teil	III: Die Vielfalt anorganisch	er			
Verk	oindungen		15	Metalle	413
			15.1	Allgemeines	413
12	Nichtmetallische Elemente	329		Metallurgie	
	Edelgase		15.3	Wichtige Metallverbindungen	426
12.2	Wasserstoff	.330	15.4	Metalle	
12.3	Die Halogene	.332		der 1. bis 4. Hauptgruppe	429
	Sauerstoff und Ozon	.335		Die Übergangsmetalle	434
12.5	Schwefel, Phosphor und		15.6	Farbe und Stabilität von	
	Kohlenstoff			Komplexen	
12.6	Stickstoff			(Kristallfeld- und MO-Theorie)	
	Übungen	.345		Übungen	454

IV: Die Chemie der Kohlen-	19.3	Aromatische Carbonsäuren	.547
verbindungen	19.4	Hydroxysäuren	548
	19.5	Ester und andere Derivate der	
Grundlagen455		Carbonsäuren	548
•	19.6	Tenside	554
<u> </u>		S	
•	20	Stickstoff- und schwefelhaltige	
			560
	20.1	~	
•			
-			
•			
-		-	
		S .	
	21	Stereochemie organischer	
Ubungen482			570
	21 1		
		•	
	21.2	=	
			580
	22	Organische Reaktionen	594
		_	
Ubungen518			
	23	Synthese	632
		=	
		-	
		<u> </u>	
	20.0	- · · · · · · · · · · · · · · · · · · ·	
•		obaligori	
Oburiger541	24	Farbige Stoffe und Farbstoffe	650
Carboneäuron und ihra		-	
		•	
•			
-	∠ + .+		
	Die Bindungsverhältnisse in Kohlenstoffverbindungen	Fverbindungen 19.4 Grundlagen 455 Die Bindungsverhältnisse in 19.6 Kohlenstoffverbindungen 456 Die Sonderstellung der 462 Kohlenstoffverbindungen 462 Molekular- und Lewis-Formeln 464 Spektroskopische Methoden 20.1 zur Konstitutionsaufklärung 467 Allgemeines über die Reaktionen 20.3 organischer Verbindungen 476 Reindarstellung und 1dentifizierung organischer Verbindungen 478 Übungen 482 Z1.1 482 Kohlenwasserstoffe 485 (Alkane) 485 Ungesättigte Kohlenwasserstoffe 485 (Alkene, Alkine) 495 Aromatische Kohlenwasserstoffe 485 (Alkene, Special Stiget Kohle	Grundlagen

10 Inhaltsverzeichnis

25	Synthetische hochmolekulare	27	Aus der Geschichte	
	Stoffe66	7	der Chemie	737
25.1	Charakterisierung66	7 27.1	Von der Alchemie zum	
25.2	Allgemeine Eigenschaften66	8	Phlogiston	737
25.3	Polymerisate67	2 27.2	Von Lavoisier zu Cannizzaro	.742
25.4	Polykondensate67	7 27.3	Strukturtheorie und chemische	
25.5	Polyaddukte68	1	Technik	.748
	Übungen68	7 27.4	Vorstellungen vom Aufbau der	
			Materie:	
26	Naturstoffe68	8	Von Demokrit zu Schrödinger	752
26.1	Terpene und Steroide69	0		
26.2	Alkaloide69	4	Lösungen	759
26.3	Kohlenhydrate69	8		
26.4	Proteine (Eiweißstoffe)70	9	Weiterführende Literatur	776
26.5	Proteide71	9		
	Übungen73	6	Sachregister	777