Rolf Stiefel

Abwasserrecycling: Technologien und Prozesswassermanagement

Das Konzept Prozesswasserautarkie

Inhaltsverzeichnis

ı	Die	wasserwende in der Prozesswassernutzung
	1.1	Wasser im Kreislauf
	1.2	Ziele der Prozesswasserautarkie
	1.3	Der anthropogene Wasserkreislauf
2	Pro	zesswassermanagement
	2.1	Aufgaben des Prozesswassermanagements
		2.1.1 Interaktionen von Abwasserinhaltsstoffen
		2.1.2 Abwasserpass für Roh-, Hilfs- und Betriebsstoffe
		zur Datenerhebung des Istzustandes
	2.2	Betriebsaudit – Prozesswasser
	2.3	Prozesswasserversorgung des Betriebes
		2.3.1 Wasserbezug der einzelnen Produktionseinheiten 19
		2.3.2 Mehrfachnutzung der Prozesswässer in den einzelnen
		Produktionseinheiten
		2.3.3 Recycling von Prozesswässern
		2.3.4 Abwasserbelastung
		2.3.5 Abfallanfall bei der Abwasserbehandlung 24
		2.3.6 Möglichkeiten der Reduzierung der Frischwassermengen 25
		2.3.7 Möglichkeiten der Wertstoffrückgewinnung
		2.3.8 Verwertung der Abwasserenergie
	2.4	Sicherheit der Wasserversorgung
	2.5	Sichere Abwasserentsorgung
	2.6	Ergebnisse Betriebsaudit
	2.7	Betriebliche Wasserbilanz (BWB)
3	Inne	erbetriebliche Maßnahmen zur Steigerung
	der	Prozesswassereffizienz
	3.1	Optimierung der Wassernutzung
	3.2	Mehrfachnutzung von Prozesswasser
	3.3	Effiziente Nutzung von Prozesswässern
	3.4	Die Substitution von Wasser
	3.5	Pilotverfahren zur Abwasseraufbereitung

VIII Inhaltsverzeichnis

4	Abw	asserrecyclingverfahren	45
	4.1	Verfahrensauswahl	45
	4.2	Absetz- und Sedimentationsverfahren	46
	4.3	Adsorptionsverfahren	50
	4.4	Adsorberharze	53
	4.5	Biologische Abwasserbehandlung	54
		4.5.1 Aerobe Abwasserbehandlung	54
		4.5.2 Anaerobe Abwasserreinigung	56
	4.6	Elektrolyse	65
		4.6.1 Elektrolytische Verfahren	65
	4.7	Extraktion – Extraktionsverfahren	68
	4.8	Flotation	70
	4.9	Fällung und Fällungsverfahren	71
	4.10	Flockung und Verfahren der Flockung	73
		Ionenaustauscher und Verfahren – Ionenaustauscheranlage	75
	4.12	Membrantechnik	76
		4.12.1 Mikrofiltration	78
		4.12.2 Ultrafiltration	79
		4.12.3 Nanofiltration	79
		4.12.4 Umkehrosmose	80
	4.13	Neutralisation und Neutralisationsanlagen	80
		Oxidationsverfahren	83
		4.14.1 Cyanidoxidation	83
		4.14.2 Verfahren zur Nitritoxidation	84
		4.14.3 Oxidation zur Desinfektion	84
	4.15	Siebung	84
		Strippung	85
		Verdampfungsanlagen	90
		Verdunstung	95
		Verbrennung	97
		Flüssig-Extraktion	97
		Biochemische Mikroaktivitäten im Kreislaufwasser	98
5		tstoffrückgewinnung aus Industrieabwässern	103
3		Von der Abwasserentsorgung zum Wastewater Mining	103
		<u> </u>	108
	5.2	Beispiele für Wertstoffrückgewinnung	
6	_	enwassernutzung im Prozesswasserkreislauf	123
	6.1	Wasserkreisläufe durch Regenwassernutzung schließen	123
		6.1.1 Regenwassernutzung hilft den betrieblichen Wasserkreislauf	100
		zu schließen	123
		6.1.2 Regenwasseranfall und Nutzung im industriellen Bereich .	124
	62	Daganwassararfassung	125

Inhaltsverzeichnis IX

	6.3	Regenwassernutzungscluster in Industriegebieten	126
	6.4	Trinkwasserverordnung (TVO) beachten	127
	6.5	Checklisten und Hinweise bei der Einführung	
		der Regenwassernutzung	130
	6.6	Checkliste für die Regenwassernutzung	131
	6.7	Behördenmanagement	133
	6.8	Wirtschaftlichkeitsprüfung	133
	6.9	Beispiele für Regenwassernutzung	134
7	Ene	rgierückgewinnung aus Industrieabwässern	137
	7.1	Möglichkeiten der Energierückgewinnung	137
		7.1.1 Potenziale der Abwasserwärmenutzung	137
		7.1.2 Nutzung der Abwasserwärme in Industriebetrieben	143
	7.2	Beispiele für Wärmerückgewinnung aus Abwasser	145
	7.3	Abwasserwärmecheck	154
	7.4	Energiegewinnung aus Abwasser mittels anaerober Behandlung	155
		7.4.1 Rohstoffe mit Potenzial für Energiegewinnung	
		im Industrieabwasser	156
		7.4.2 Beispiele für Energiegewinnung aus Industrieabwasser	100
		mittels anaerober Verfahren	158
	7.5	Checkliste anaerobe Abwasserbehandlung	163
8	_	enanalytik des betrieblichen Wasserkreislaufes (EABW)	165
	8.1	Eigenanalytik als Tachometer der Qualitätssicherung	165
	8.2	Probenahme in der Eigenanalytik	166
		8.2.1 Allgemeine Anforderungen an die Probenahme	166
		8.2.2 Probenahmearten	167
	8.3	Parameter der Prozesswasseranalytik	170
	8.4	Instrumentarien für die Eigenanalytik	171
		8.4.1 Basisgerätschaften	171
		8.4.2 Fotometer	173
		8.4.3 Organische Summenparameter	174
		8.4.4 Biologische Abbaubarkeit in fünf Tagen – BSB ₅	177
	8.5	Akute Abwassertoxizität	177
	8.6	Keimzahl	178
	8.7	Onlinemessungen im Abwasser	186
9	Wis	sensmanagement für die betriebliche Wasserwirtschaft	189
	9.1	Die Ziele des Wissensmanagements	190
	9.2	Aufbau der Wissensbasis für die betriebliche Wasserwirtschaft	192
	9.3	Wissensnutzung und Wissenspflege	194
	9.4		195

X	Inhaltsverzeichnis

10 D	oas Konzept Prozesswasserautarkie als Zukunftsinvestition	197
	0.1 Steigende Anforderungen an die betriebliche Abwasserwirtschaft .	197
	0.2 Die Wasserwende in der betrieblichen Abwasserwirtschaft	
	als Chance und Zukunftsperspektive	198
10	0.3 Der Einstieg in die Kreislaufwirtschaft der Prozesswässer	199
10	0.4 Möglichkeiten für Wasser-und Energieautarkie in der Produktion .	200
10	0.5 Innerbetriebliche Maßnahmen senken den Abwasseranfall	200
10	0.6 Ressourcenschonende Techniken als Zukunftsinvestitionen	205
10	0.7 Das Konzept Prozesswasserautarkie als Standortsicherung	207
Literatu	ır	209
Stichwo	ortverzeichnis	221