

Third Edition

Damodar N. Gujarati

United States Military Academy, West Point

McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

CONTENTS

Preface	xxi
Introduction	1

Part 1 Single-Equation Regression Models

1	Th	e Nature of Regression Analysis	15
	1.1	Historical Origin of the Term "Regression"	15
	1.2	The Modern Interpretation of Regression	16
		Examples	16
	1.3	Statistical vs. Deterministic Relationships	19
	1.4	Regression vs. Causation	20
	1.5	Regression vs. Correlation	21
	1.6	Terminology and Notation	22
	1.7	The Nature and Sources of Data for Econometric	
		Analysis	23
		Types of Data	23
		The Sources of Data	24
		The Accuracy of Data	26
	1.8	Summary and Conclusions	27
		Exercises	28
		Appendix 1A	29
		1 A. 1 Sources of Economic Data	29
		1 A.2 Sources of Financial Data	31
2	Τw	o-Variable Regression Analysis:	
	So	me Basic Ideas	32
	2.1	A Hypothetical Example	32
	2.2	The Concept of Population Regression Function (PRF)	36
	2.3	The Meaning of the Term "Linear"	36
		Linearity in the Variables	37
		Linearity in the Parameters	37
	2.4	Stochastic Specification of PRF	38

2.5 2.6	The Significance of the Stochastic Disturbance Term The Sample Regression Function (SRF)	39 41
2.7	Summary and Conclusions	45
	Exercises	45
Two	-Variable Regression Model:	
The	Problem of Estimation	52
3.1	The Method of Ordinary Least Squares	52
3.2	The Classical Linear Regression Model: The Assumptions	50
	Underlying the Method of Least Squares	59
33	Precision or Standard Errors of Least-Squares	08
5.5	Estimates	69
3.4	Properties of Least-Squares Estimators:	
	The Gauss-Markov Theorem	72
3.5	The Coefficient of Determination r^2 : A Measure	
26	of "Goodness of Fit"	74
3.6 2.7	A Numerical Example	80
5.7	Coffee Consumption in the United States 1970-1980	83
	Kevnesian Consumption Function for the United	05
	States, 1980-1991	84
3.8	Computer Output for the Coffee Demand Function	85
3.9	A Note on Monte Carlo Experiments	85
3.10	Summary and Conclusions	86
	Exercises	8/
	Problems	89
	Appendix 3A	94
	3A.1 Derivation of Least-Squares Estimates	94
	3A.2 Linearity and Unbiasedness Properties	
	of Least-Squares Estimators	94
	3 A. 3 Variances and Standard Errors of Least-Squares	05
	Estimators A	95
	3A.5 The Least-Squares Estimator of a^{l}	90
	3A.6 Minimum-Variance Property of Least-Squares	20
	Estimators	97
	3A.7 SAS Output of the Coffee Demand Function	
	(3.7.1)	99
The	Normality Assumption: Classical Normal	
Lin	ear Regression Model (CNLRM)	101
41 T	The Probability Distribution of Disturbances M	101
4.2	The Normality Assumption	101
4.3	Properties of OLS Estimators under the Normality	
	Assumption	104
4.4	The Method of Maximum Likelihood (ML)	107
4.5	Probability Distributions Related to the	
	Normal Distribution: The <i>t</i> , Chi-square (x^{-})	107
		107

4.6	Summary and Conclusions	109
	Appendix 4A	110
	Maximum Likelihood Estimation of Two-Variable	
	Regression Model	110
	Maximum Likelihood Estimation of the	
	Consumption-Income Example	113
	Appendix 4A Exercises	113
T		
Two	-Variable Regression: Interval Estimation	
and	Hypothesis Testing	115
5.1	Statistical Prerequisites	115
5.2	Interval Estimation: Some Basic Ideas	116
5.3	Confidence Intervals for Regression Coefficients j3i	
	and $/8_2$	117
	Confidence Interval for $/3_2$	117
	Confidence Interval for /3i	119
	Confidence Interval for fa and fa Simultaneously	120
5.4	Confidence Interval for a^2	120
5.5	Hypothesis Testing: General Comments	121
5.6	Hypothesis Testing: The Confidence-Interval Approach	122
	Two-Sided or Two-Tail Test	122
	One-Sided or One-Tail Test	124
5.7	Hypothesis Testing: The Test-of-Significance Approach	124
	Testing the Significance of Regression Coefficients:	
	The /-Test	124
	Testing the Significance of a^2 : The x^2 Test	128
5.8	Hypothesis Testing: Some Practical Aspects	129
	The Meaning of "Accepting" or "Rejecting"	
	a Hypothesis	129
	The "Zero" Null Hypothesis and the "2-t" Rule	
	of Thumb	129
	Forming the Null and Alternative Hypotheses	130
	Choosing <i>a</i> , the Level of Significance	131
	The Exact Level of Significance: The <i>p</i> Value	132
	Statistical Significance versus Practical Significance	133
	The Choice between Confidence-Interval and	
	Test-of-Significance Approaches to Hypothesis	104
5.0	Lesting	134
5.9	Agression Analysis and Analysis of Variance	154
5.10	Application of Regression Analysis: The Problem	127
	Maan Prediction	137
	Individual Prediction	137
5 1 1	Paparting the Desults of Pagression Analysis	130
5.12	Evaluating the Decults of Degression Analysis	140
3.12	Normality Test	140
	Other Tests of Model Adaguage	141
5 1 3	Summary and Conclusions	144
5.15	Evercises	1/17
	Questions	145
	Problems	145
		/

		Appendix 5A	152
		5A.1 Derivation of Equation (5.5.2)	152
		5A.2 Derivation of Equations (5.10.2) and (5.10.6)	152
		Variance of Mean Prediction	153
		Variance of Individual Prediction	153
		variance of marvidual frediction	155
6	Ex	tensions of the Two-Variable Linear	1.55
	Reg	gression Model	155
	6.1	Regression through the Origin	155
		r ² for Regression-through-Origin Model	159
		An Illustrative Example: The Characteristic Line of	1.50
	()	Portfolio Theory	159
	6.2	A Numerical Example: The Delationship between	101
		GPDI and CND United States 1074 1083	163
		A Word about Interpretation	164
	63	Functional Forms of Regression Models	165
	64	How to Measure Elasticity: The Log-Linear Model	165
	0.1	An Illustrative Example: The Coffee Demand Function	105
		Revisited	167
	6.5	Semilog Models: Log-Lin and Lin-Log Models	169
		How to Measure the Growth Rate: The Log-Lin Model	169
		The Lin-Log Model	172
	6.6	Reciprocal Models	173
		An Illustrative Example: The Phillips Curve for the	
		United Kingdom, 1950-1966	176
	6.7	Summary of Functional Forms	176
	6.8	A Note on the Nature of the Stochastic Error Term:	
		Additive versus Multiplicative Stochastic Error Term	178
	6.9	Summary and Conclusions	179
		Exercises	180
		Questions	180
		Problems	183
		Appendix 6A 6A 1 Derivation of Logst Squares Estimators for	180
		OA. I Derivation of Least-Squares Estimators for Regression through the Origin	196
		64.2 SAS Output of the Characteristic Line (6.1.12)	180
		6A 3 SAS Output of the United Kingdom Phillips Curve	107
		Regression (6.6.2)	190
			170
7	Мı	Itiple Regression Analysis: The Problem	
	of	Estimation	
	7.1	The Three-Variable Model: Notation and Assumptions	
	7.2	Interpretation of Multiple Regression Equation	
	7.3	The Meaning of Partial Regression Coefficients	

- 7.4 OLS and ML Estimation of the Partial Regression Coefficients
 - **OLS** Estimators

Variances and Standard Errors of OLS Estimators

	Properties of OLS Estimators	199
	Maximum Likelihood Estimators	201
7.5	The Multiple Coefficient of Determination R^2	• • • •
	and the Multiple Coefficient of Correlation <i>R</i>	201
7.6	Example 7.1: The Expectations-Augmented Phillips	
	Curve for the United States, 1970-1982	203
7.7	Simple Regression in the Context of Multiple	
	Regression: Introduction to Specification Bias	204
7.8	R^2 and the Adjusted R^2	207
	Comparing Two R^2 Values	209
	Example 7.2: Coffee Demand Function Revisited	210
	The "Game" of Maximizing R^2	211
7.9	Partial Correlation Coefficients	211
	Explanation of Simple and Partial Correlation	
	Coefficients	211
	Interpretation of Simple and Partial Correlation	
	Coefficients	213
7.10	Example 7.3: The Cobb-Douglas Production Function:	
	More on Functional Form	214
7 1 1	Polynomial Regression Models	217
/.11	Example 7.4. Estimating the Total Cost Function	218
	Empirical Results	210
7 1 2	Summary and Conclusions	220
1.12	Exercises	221
	Questions	221
	Problems	221
	Appendix 7A	224
	7A 1 Derivation of OLS Estimators Civen in	231
	(A. I Derivation of OLS Estimators Given in Equations $(7.4.2)$ and $(7.4.5)$	221
	Equations (7.4.5) and (7.4.5) 74.2 Equality between $r = cf(7.2.5)$ and (2. $cf(7.4.7)$	201
	7A.2 Equality between a_x of (7.5.5) and 7_2 of (7.4.7)	232
	7A.3 Derivation of Equation (7.4.19)	232
	A.4 Maximum Likelihood Estimation of the Multiple	
	Regression Model	233
	7A.5 The Proof that $E(b_{12}) = pi + 3_3 tc_{32}$ (Equation	
	7.7.4)	234
	7A.6 SAS Output of the Expectations-Augmented	
	Phillips Curve (7.6.2)	236
	7A.7 SAS Output of the Cobb-Douglas Production	
	Function (7.10.4)	237
Mu	Itiple Regression Analysis: The Problem	
of I	nference	238
<u>8</u> 1	The Normality Assumption Once Again	238
82	Example 8 1: U.S. Personal Consumption and Personal	230
0.2	Disposal Income Relation 1956 1970	230
82	Hypothesis Testing in Multiple Degression, Constal	239
0.3	Comments	242
0 4	Unintents	242
8.4	Hypothesis Testing about Individual Partial Regression	0.40
0.7	Coefficients	242
8.5	Testing the Overall Significance of the Sample	~
	Regression	244

8

The Analysis of Variance Approach to Testing the Overall Significance of an Observed Multiple Regression: The F Test An Important Relationship between R^2 and FThe "Incremental," or "Marginal," Contribution of an Explanatory Variable Testing the Equality of Two Regression Coefficients

- 8.6 Testing the Equality of Two Regression Coefficients Example 8.2: The Cubic Cost Function Revisited
- 8.7 Restricted Least Squares: Testing Linear Equality Restrictions

The *t* Test Approach The *F* Test Approach: Restricted Least Squares Example 8.3: The Cobb-Douglas Production Function for Taiwanese Agricultural Sector, 1958-1972 General *F* Testing

- 8.8 Comparing Two Regressions: Testing for Structural Stability of Regression Models
- 8.9 Testing the Functional Form of Regression: Choosing between Linear and Log-Linear Regression Models Example 8.5: The Demand for Roses
- 8.10 Prediction with Multiple Regression
- 8.11 The Troika of Hypothesis Tests: The Likelihood Ratio (LR), Wald (W), and Lagrange Multiplier (LM) Tests
- 8.12 Summary and Conclusions The Road Ahead Exercises

Questions

- Problems
- Appendix 8A
- Likelihood Ratio (LR) Test

9 The Matrix Approach to Linear Regression Model

- 9.1 The A:-Variable Linear Regression Model
- 9.2 Assumptions of the Classical Linear Regression Model in Matrix Notation
- 9.3 OLS Estimation An Illustration Variance-Covariance Matrix of {\$ Properties of OLS Vector j\$
- 9.4 The Coefficient of Determination R^2 in Matrix Notation
- 9.5 The Correlation Matrix
- 9.6 Hypothesis Testing about Individual Regression Coefficients in Matrix Notation
- 9.7 Testing the Overall Significance of Regression: Analysis of Variance in Matrix Notation
- 9.8 Testing Linear Restrictions: General *F* Testing Using Matrix Notation
- 9.9 Prediction Using Multiple Regression: Matrix Formulation Mean Prediction

	Individual Prediction	296
	Variance of Mean Prediction	297
	Variance of Individual Prediction	298
9.10	Summary of the Matrix Approach: An Illustrative	
	Example	298
9.11	Summary and Conclusions	
	Exercises	304
	Appendix 9A	309
	9A.1 Derivation of <i>k</i> Normal or Simultaneous	
	Equations	309
	9A.2 Matrix Derivation of Normal Equations	310
	9A.3 Variance-Covariance Matrix of p	310
	9A.4 Blue Property of OLS Estimators	311

Part 2 Relaxing the Assumptions of the Classical Model

10	Mult	icollinearity and Micronumerosity	319
	10.1	The Nature of Multicollinearity	320
	10.2	Estimation in the Presence of Perfect Multicollinearity	323
	10.3	Estimation in the Presence of "High" but "Imperfect"	
		Multicollinearity	325
	10.4	Multicollinearity: Much Ado about Nothing?	
		Theoretical Consequences of Multicollinearity	325
	10.5	Practical Consequences of Multicollinearity	327
		Large Variances and Covariances of OLS Estimators	328
		Wider Confidence Intervals	329
		"Insignificant" t Ratios	330
		A High R^2 but Few Significant t Ratios	330
		Sensitivity of OLS Estimators and Their Standard	
		Errors to Small Changes in Data	331
		Consequences of Micronumerosity	332
	10.6	An Illustrative Example: Consumption Expenditure	
		in Relation to Income and Wealth	332
	10.7	Detection of Multicollinearity	335
	10.8	Remedial Measures	339
	10.9	Is Multicollinearity Necessarily Bad? Maybe Not If the	
		Objective Is Prediction Only	344
	10.10	Summary and Conclusions	345
		Exercises	346
		Questions	346
		Problems	351
11	Hete	roscedasticity	355
	11.1	The Nature of Heteroscedasticity	355
	11.2	OLS Estimation in the Presence of Heteroscedasticity	359
	11.3	The Method of Generalized Least Squares (GLS)	362
		Difference between OLS and GLS	364
	11.4	Consequences of Using OLS in the Presence	
		of Heteroscedasticity	365
		OLS Estimation Allowing for Heteroscedasticity	365
		OLS Estimation Disregarding Heteroscedasticity	366

- 11.5 Detection of Heteroscedasticity Informal Methods Formal Methods
- 11.6 Remedial Measures
 When *erf* Is Known: The Method of Weighted Least
 Squares
 When *<rf* Is Not Known
- 11.7 A Concluding Example
- 11.8 Summary and Conclusions Exercises Questions Problems Appendix 11A
 - 11 A. 1 Proof of Equation (11.2.2)
 - 11 A.2 The Method of Weighted Least Squares

12 Autocorrelation

- 12.1 The Nature of the Problem
- 12.2 OLS Estimation in the Presence of Autocorrelation
- 12.3 The BLUE Estimator in the Presence of Autocorrelation
- 12.4 Consequences of Using OLS in the Presence of Autocorrelation OLS Estimation Allowing for Autocorrelation
 - OLS Estimation Disregarding Autocorrelation
- 12.5 Detecting Autocorrelation Graphical Method The Runs Test Durbin-Watson d Test Additional Tests of Autocorrelation
- 12.6 Remedial Measures When the Structure of Autocorrelation Is Known When p Is Not Known
- 12.7 An Illustrative Example: The Relationship between Help-Wanted Index and the Unemployment Rate, United States: Comparison of the Methods
- 12.8 Autoregressive Conditional Heteroscedasticity (ARCH) Model
 What to Do If ARCH Is Present?
 A Word on the Durbin-Watson d Statistic and the
 - ARCH Effect
- 12.9 Summary and Conclusions Exercises Questions Problems Appendix 12A
 - 12A.1 TSP Output of United States Wages (Y)-Productivity (X) Regression, 1960-1991

13 Econometric Modeling I: Traditional Econometric Methodology

13.1 The Traditional View of Econometric Modeling: Average Economic Regression (AER)

	13.2	Types of Specification Errors	455
	13.3	Consequences of Specification Errors	456
		Omitting a Relevant Variable (Underfitting a Model) Inclusion of an Irrelevant Variable (Overfitting a	456
		Model)	458
	13.4	Tests of Specification Errors	459
		Detecting the Presence of Unnecessary Variables	460
		Tests for Omitted Variables and Incorrect Functional	
		Form	461
	13.5	Errors of Measurement	467
		Errors of Measurement in the Dependent Variable Y	468
		Errors of Measurement in the Explanatory Variable X	469
		An Example	470
		Measurement Errors in the Dependent Variable Y	
		Only	471
		Errors of Measurement in X	472
	13.6	Summary and Conclusions	472
		Exercises	473
		Questions	473
		Problems	476
		Appendix 13A	477
		13A.I The Consequences of Including an Irrelevant	
		Variable: The Unbiasedness Property	477
		13A.2 Proof of (13.5.10)	478
14	Eco	nometric Modeling II:	
	Alte	rnative Econometric Methodologies	480
	14.1	Learner's Approach to Model Selection	481
	14.2	Hendry's Approach to Model Selection	485
	14.3	Selected Diagnostic Tests: General Comments	486
	14.4	Tests of Nonnested Hypothesis	487
		The Discrimination Approach	487
		The Discerning Approach	488
	14.5	Summary and Conclusions	494
		Exercises	494
		Questions	494
		Problems	495

Part 3 Topics in Econometrics

15	6 Reg	ression on Dummy Variables	499
	15.1	The Nature of Dummy Variables	499
		ExamDle 15.1: Professor's Salary by Sex	500
	15.2	Regression on One Quantitative Variable and One	
		Qualitative Variable with Two Classes, or Categories	502
		Example 15.2: Are Inventories Sensitive to Interest	
		Rates?	505
	15.3	Regression on One Quantitative Variable and One	
		Qualitative Variable with More than Two Classes	505
	15.4	Regression on One Quantitative Variable and Two	
		Qualitative Variables	507

- 15.5 Example 15.3: The Economics of "Moonlighting"
- 15.6 Testing for Structural Stability of Regression Models: Basic Ideas Example 15.4: Savings and Income, United Kingdom, 1946-1963
- 15.7 Comparing Two Regressions: The Dummy Variable Approach
- 15.8 Comparing Two Regressions: Further Illustration Example 15.5: The Behavior of Unemployment and Unfilled Vacancies: Great Britain, 1958-1971
- 15.9 Interaction Effects
- 15.10 The Use of Dummy Variables in Seasonal Analysis Example 15.6: Profits-Sales Behavior in U.S. Manufacturing
- 15.11 Piecewise Linear Regression Example 15.7: Total Cost in Relation to Output
- 15.12 The Use of Dummy Variables in Combining Time Series and Cross-Sectional Data Pooled Regression: Pooling Time Series and Cross-Sectional Data Example 15.8: Investment Functions for General Motors and Westinghouse Companies
- 15.13 Some Technical Aspects of Dummy Variable Technique The Interpretation of Dummy Variables in

The Interpretation of Dummy Variables in Semilogarithmic Regressions

Example 15.9: Semilogarithmic Regression with Dummy Variable

Another Method of Avoiding the Dummy Variable Trap

Dummy Variables and Heteroscedasticity Dummy Variables and Autocorrelation

- 15.14 Topics for Further Study
- 15.15 Summary and Conclusions

Exercises

Questions

Problems

Appendix 15A

- 15A.1 Data Matrix for Regression (15.8.2)
- 15A.2 Data Matrix for Regression (15.10.2)

16 Regression on Dummy Dependent Variable: The LPM, Logit, Probit, and Tobit Models

- 16.1 Dummy Dependent Variable
- 16.2 The Linear Probability Model (LPM)
- 16.3 Problems in Estimation of LPM

Nonnormality of the Disturbances «; Heteroscedastic Variances of the Disturbances Nonfulfillment of $0 < E(Y_i | X) < 1$ Questionable Value of R^2 as a Measure of Goodness of Fit

	16.4	LPM: A Numerical Example	546
	16.5	Applications of LPM	548
		Example 16.1: Cohen-Rea-Lerman study	548
		Example 16.2: Predicting a Bond Rating	551
		Example 16.3: Predicting Bond Defaults	552
	16.6	Alternatives to LPM	552
	16.7	The Logit Model	554
	16.8	Estimation of the Logit Model	556
	16.9	The Logit Model: A Numerical Example	558
	16.10	The Logit Model: Illustrative Examples	561
		Example 16.4: "An Application of Logit Analysis to	F < 1
		Prediction of Merger Largets	561
	16 11	Example 16.5: Predicting a Bond Kating	562
	16.11	The Probit Model A Numerical Example	503
	10.12	Logit versus Probit	567
		Comparing Logit and Probit Estimates	568
		The Marginal Effect of a Unit Change in the Value of	500
		a Regressor	569
	16 13	The Probit Model: Example 165	569
	16.13	The Tobit Model	570
	16.15	Summary and Conclusions	575
		Exercises	576
		Questions	576
		Problems	578
7	Dun	amia Faanamatria Madaly Autorograagiya	
/	Dyna	anne Econometric Model. Autoregressive	504
	and	Distributed-Lag Models	584
	17.1	The Role of "Time," or "Lag," in Economics	585
	17.2	The Reasons for Lags	589
	17.3	Estimation of Distributed-Lag Models	590
	17.4	Ad Hoc Estimation of Distributed-Lag Models	590
	17.4	The Koyck Approach to Distributed-Lag Models	592
		The Median Lag	595 505
	175	Pationalization of the Koyak Model: The Adentive	393
	17.5	Expectations Model	506
	17.6	Another Rationalization of the Kovek Model: The	590
	17.0	Stock Adjustment or Partial Adjustment Model	599
	177	Combination of Adaptive Expectations and Partial	577
	17.7	Adjustment Models	601
	17.8	Estimation of Autoregressive Models	602
	17.9	The Method of Instrumental Variables (IV)	604
	17.10	Detecting Autocorrelation in Autoregressive Models:	
		Durbin h Test	605
	17.11	A Numerical Example: The Demand for Money in	
		India	607
	17.12	Illustrative Examples	609
		Example 17.7: The Fed and the Real Rate of Interest	609
		Example 17.8: The Short- and Long-Run Aggregate	
		Consumption Functions for the United States,	
		1946-1972	611

1

- 17.13 The Almon Approach to Distributed-Lag Models: The Almon or Polynomial Distributed Lag (PDL)
- 17.14 Causality in Economics: The Granger Test The Granger Test Empirical Results
- 17.15 Summary and Conclusions Exercises Questions Problems

Part 4 Simultaneous-Equation Models

18 Simultaneous-Equation Models

- 18.1 The Nature of Simultaneous-Equation Models
- 18.2 Examples of Simultaneous-Equation Models Example 18.1: Demand-and-Supply Model Example 18.2: Keynesian Model of Income Determination Example 18.3: Wage-Price Models Example 18.4: The IS Model of Macroeconomics Example 18.5: The LM Model Example 18.6: Econometric Models
- 18.3 The Simultaneous-Equation Bias: Inconsistency of OLS Estimators
- 18.4 The Simultaneous-Equation Bias: A Numerical Example
- 18.5 Summary and Conclusions Exercises Questions
 - Problems

19 The Identification Problem

- 19.1 Notations and Definitions
- 19.2 The Identification Problem Underidentification Just, or Exact, Identification Overidentification
- 19.3 Rules for Identification The Order Condition of Identifiability The Rank Condition of Identifiability
- 19.4 A Test of Simultaneity Hausman Specification Test Example 19.5: Pindyck-Rubinfeld Model of Public Spending
- 19.5 Tests for Exogeneity A Note on Causality and Exogeneity
- 19.6 Summary and Conclusions Exercises

20 Simultaneous-Equation Methods

- 20.1 Approaches to Estimation
- 20.2 Recursive Models and Ordinary Least Squares

20.3	Estimation of a Just Identified Equation: The Method	
	of Indirect Least Squares (ILS)	682
	An Illustrative Example	683
	Properties of ILS Estimators	686
20.4	Estimation of an Overidentified Equation: The Method	
	of Two-Stage Least Squares (2SLS)	686
20.5	2SLS: A Numerical Example	690
20.6	Illustrative Examples	693
	Example 20.1: Advertising, Concentration, and Price	
	Margins	693
	Example 20.2: Klein's Model I	694
	Example 20.3: The Capital Asset Pricing Model	
	Expressed as a Recursive System	694
	Example 20.4: Revised Form of St. Louis Model	697
20.7	Summary and Conclusions	699
	Exercises	700
	Questions	700
	Problems	703
	Appendix 20A	704
	20A.1 Bias in the Indirect Least-Squares Estimators	704
	20A.2 Estimation of Standard Errors of 2SLS	
	Estimators	705

Part 5 Time Series Econometrics

Time Series Econometrics I: Stationarity, Unit			
Roo	ts, and Cointegration	709	
21.1	A Look at Selected U.S. Economic Time Series	710	
21.2	Stationary Stochastic Process	710	
21.3	Test of Stationarity Based on Correlogram	714	
21.4	The Unit Root Test of Stationarity	718	
	Is the U.S. GDP Time Series Stationary?	720	
	Is the First-Differenced GDP Series Stationary?	721	
21.5	Trend-Stationary (TS) and Difference-Stationary (DS)		
	Stochastic Process	722	
21.6	Spurious Regression	724	
21.7	Cointegration	725	
	Engle-Granger (EG) or Augmented Engle-Granger		
	(AEG) Test	726	
	Cointegrating Regression Durbin-Watson (CRDW)		
	Test	727	
21.8	Cointegration and Error Correction Mechanism		
	(ECM)	728	
21.9	Summary and Conclusions	729	
	Exercises	730	
	Questions	730	
	Problems	731	
	Appendix 21A	732	
	21A.1 A Random Walk Model	732	
	Tim Roo 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9	 Time Series Econometrics I: Stationarity, Unit Roots, and Cointegration 21.1 A Look at Selected U.S. Economic Time Series 21.2 Stationary Stochastic Process 21.3 Test of Stationarity Based on Correlogram 21.4 The Unit Root Test of Stationarity Is the U.S. GDP Time Series Stationary? Is the First-Differenced GDP Series Stationary? 21.5 Trend-Stationary (TS) and Difference-Stationary (DS) Stochastic Process 21.6 Spurious Regression 21.7 Cointegration Engle-Granger (EG) or Augmented Engle-Granger (AEG) Test Cointegrating Regression Durbin-Watson (CRDW) Test 21.8 Cointegration and Error Correction Mechanism (ECM) 21.9 Summary and Conclusions Exercises Questions Problems Appendix 21A 21A.1 A Random Walk Model 	

22	Time Series Econometrics II: Forecasting			
	with ARIMA and VAR Models			
	22.1	Approaches to Economic Forecasting	734	
	22.2	AR, MA, and ARIMA Modeling of Time Series Data	736	
		An Autoregressive (AR) Process	736	
		A Moving Average (MA) Process	737	
		An Autoregressive and Moving Average (ARMA)		
		Process	737	
		An Autoregressive Integrated Moving Average		
		(ARIMA) Process	737	
	22.3	The Box-Jenkins (BJ) Methodology	738	
	22.4	Identification	739	
	22.5	Estimation of the ARIMA Model	742	
	22.6	Diagnostic Checking	743	
	22.7	Forecasting	744	
	22.8	Further Aspects of the BJ Methodology	745	
	22.9	Vector Autoregression (VAR)	746	
		Estimation of VAR	746	
		Forecasting with VAR	747	
		Some Problems with VAR Modeling	747	
		An Application of VAR: A VAR Model of the Texas		
		Economy		
	22.10	Summary and Conclusions		
		Exercises		

Questions Problems

Appendixes

- A A Review of Some Statistical Concepts
- B Rudiments of Matrix Algebra
- C A List of Statistical Computer Packages
- D Statistical Tables
 - Table D. 1Areas under the Standardized Normal
Distribution
 - Table D.2
 Percentage Points of the t Distribution
 - Table D.3
 Upper Percentage Points of the F Distribution
 - Table D.4Upper Percentage Points of the x^2 Distribution
 - Table D.5Durbin-Watson d Statistic: Significant Points of
di and du at 0.05 and 0.01 Levels of Significance
 - Table D.6 Critical Values of Runs in the Runs Test

Selected Bibliography Indexes Name Index Subject Index