Analytical Techniques for Foods and Agricultural Products

EDITED BY
G. Linden

TRANSLATED BY
Lance Dieter

EDITOR FOR THE ENGLISH-LANGUAGE EDITION
W. Jeffrey Hurst
Contents

PART I PHYSICAL TECHNIQUES 1

Chapter 1 Spectrophotometric Techniques 3

G. Linden and M. F. Guingamp

1.1. Interactions Between Matter and Radiation 4
1.2. Molecular Absorption Spectrometry 18
1.3. Atomic Emission Spectrometry 28
1.4. Atomic Absorption Spectrometry 34
1.5. Atomic and Molecular Fluorimetry 41

References 41
Additional References 44

Chapter 2 Other Optical and Spectroscopic Techniques 47

A. Optical Techniques 47

A. Driou

2.1. Photometry in Turbid Solutions 47
2.2. Polarimetry 50
2.3. Refractometry 52

Contributors xix
2.4. Color 56
2.5. Flow Cytometry 58

B. Near Infrared Spectroscopy 59
2.6. Physical Theory 60
2.7. Instrumentation 61
2.8. Theory of an Analytical Application 63
2.9. Domain of Application 65
 References 66
 Additional references 66

Chapter 3 Image Analysis Techniques 67
A. Tosser
3.1. Introduction 67
3.2. Some Concrete Examples 71
3.3. Who Makes What? 75
3.4. Conclusions 77
 References 77
 Additional References 77

Chapter 4 Chromatography 79
D. Lorient, J. C. Lhuguenot and A. Voilley
4.1. Fundamentals 79
4.2. Liquid Phase Chromotography 88
4.3. Gas Chromatography 103
4.4. Conclusion 115
 References 115
 Additional References 119

Chapter 5 Electrophoresis 121
J. C. Autran
5.1. Principles 121
5.2. Fundamental Laws and Concepts 123
5.3. Practical Considerations 129
5.4. Current Principal Electrophoretic Techniques 134
5.5. Examples of Electrophoresis in the Agriculture and Food Industries 143
5.6. Conclusion: Potentials and Limits of Electrophoretic Techniques 144
 References 146
 Additional References 148
Chapter 6 Thermal Analysis 149
G. Blond and D. Simatos

6.1. Thermoanalytic Techniques 149
6.2. Methods and Instruments 151
6.3. Potential Applications to Foods 162
6.4. Conclusion 167
References 167
Additional References 171

Chapter 7 Electrochemical Techniques 173
H. Le Nours. J. F. Le Meur and M. Senechal

7.1. Electrochemical Reactions 173
7.2. Potentiometric Methods 181
7.3. Amperometric Applications 186
7.4. Polarographic Methods 188
7.5. Coulometry 191
7.6. Conductimetry 191
References 192
Additional References 193

Chapter 8 Rheological Techniques 195
B. Launay

8.1. Introduction 195
8.2. Some Fundamental Definitions 196
8.3. Experimental Methods 197
References 226
Additional References 227

Chapter 9 Method of Particle Size Analysis 229
J. P. Melcion and F. de Monredon

9.1. Particle Size Analysis 229
9.2. Sieving 235
9.3. Resistance Variation Counters 238
9.4. Light Diffraction 244
9.5. Applications in the Food Industry 246
References 247
Additional References 248
Chapter 10 Complex and Expensive Instrumental Techniques 249

A. Nuclear Magnetic Resonance (NMR) 249
D. N. Rutledge and D. Tome

10.1. Nuclear Magnetic Resonance 249
10.2. The Nuclear Magnetic Resonance Phenomenon 249
10.3. NMR Parameters 252
10.4. Techniques 256
10.5. Applications 264
10.6. Conclusion 266
References 266
Additional References 268

B. X-Ray Diffraction 268
A. Buleon

10.7. Principles of X-ray Diffraction 269
10.8. Instrumentation 271
10.9. Application Domains of X-Ray Diffraction 272
10.10. Conclusion 275
References 276

C. Electron Microscopy Applied to Food Technology 276
D. J. Gallant and B. Bouchet

10.11. Introduction 276
10.13. Transmission Electron Microscope (TEM) 280
10.15. Microanalysis 289
10.16. Image Analysis 292
10.17. Applications of Electron Microscopy to Food Technology 293
10.18. Conclusion 297
References 297
Additional References 300

D. Mass Spectrometry 300
J. Adda and J. L. Le Quere

10.19. Principles 300
10.20. Components of a Mass Spectrometer 302
10.21. Recent Developments in Mass Spectrometry 319
10.22. Conclusion 320
 References 321

E. Radiochemical Techniques 322
G. Simonnet and F. Simonnet

10.23. Introduction 322
10.24. Radioisotopes 322
10.25. Radioanalysis Methods Using a Radioactive Agent:
 Radiometric Analysis 325
10.26. Analysis by Isotopic Dilution 325
10.27. Radioimmunological Determinations 328
10.28. Radioimmunometric Determinations 333
10.29. Activation Analysis 335
 References 341
 Additional References 341

PART II BIOCHEMICAL TECHNIQUES 343

Chapter 1 Enzymatic Analysis 345
P. Le Roux

1.1. Main Properties of Enzymes 345
1.2. Determination of Substrate Concentration 349
1.3. Measurement of Enzyme Activity 356
1.4. Principal Techniques of Detection 358
1.5. Enzymatic Analysis in Food Chemistry 360
1.6. Conclusion 361
 References 361
 Additional References 363

Chapter 2 Immunochemical Analysis Techniques 365
J. L. Bergere

2.1. General 366
2.2. Obtaining Antibodies 369
2.3. Precipitation Techniques 372
2.4. Agglutination Techniques 377
2.5. Techniques Using Labeled (Ag or Ab) Reagents 379
2.6. Applications of Immunochemical Analysis Techniques in
 the Food and Agriculture Industry 386
 References 387
 Additional References 390
Chapter 3 Microbiological Chemical Analysis Techniques 391
M. Bouix, B. Carpentier, G. Durant and J. Y. Leveau

3.1. Qualitative Microbiological Analysis Techniques 392
3.2. Quantitative Microbiological Analysis Techniques 395
References 402

PART III SENSORY EVALUATION 403
F. Sauvageot

Introduction 405

1. Rule 1: Defining the Characteristics of the Group
Evaluating the Samples 406
• Two types of groups, or the two points of view on sensory evaluation • The analysis and quantification group • The hedonic group

2. Rule 2 Define the Size of the Group on Rational Data 414
• Working with a continuous variable • Working, with a discontinuous variable

3. Rule 3: Precisely Define the Sample Being Evaluated and the Conditions of Evaluation 425
• Position of the problem • Cooking • The choice of sample matrix • Cutting • Temperature • The nature of the sample • Can the judge prepare the sample himself

4. Rule 4: Choose an Appropriate Test for the Problem 430
• Case 1: I have two or several products. I want to know if they are different. • Case 2: I have two or several products. I know that they are different. I would like to find the characteristic in which they differ. • Case 3: I have a product. I know its sensory profile. I desire to know if it is pleasing;

or: I have several products. I know the characteristics in which these products differ. I want to know if they are equally pleasing. • Case 4: I have several products that differ by one characteristic of which I know the nature and intensity. I want to determine the parameters relating the intensity and the sensory response.

5. Rule 5: Give Greater Importance to Experimental Methods where Each Subject Repeats the Evaluation Several Times 463
6. Rule 6: Be Scrupulously Watchful that Both the Anonymity of the Sample and the Independence of the Subjects is Assured 466
 • Sample anonymity • subjects independence

7. Rule 7: Refuse Implicit Instructions. Require, on the Contrary, that They be Explicitly Written 469
 • Position of the problem • Hedonic tests • Discriminative or intensity estimation tests

8. Rule 8: Manage and Interpret the Results with Rigor 472
 • Take guard against dangerous extrapolations • Reveal individual contributions • Use graphic representations, if possible • Understand the interest of the statistical procedure

9. Conclusion: A Rule 9? 475
 References 475
 Additional references 479
 Appendix 481

PART IV NUTRITIONAL AND TOXICOLOGICAL ANALYSIS TECHNIQUES 495

Chapter 1 Nutritional Analysis Techniques 497
J. Adrian, M. Rabache and R. Frangne

1.1. Characteristics and Purpose of Nutritional Analysis 497
1.2. Analytical Principles 498
1.3. Animal Techniques 501
1.4. Significance of the Physical and Chemical Techniques 512
1.5. Mixed Methods 517
1.6. Available Lysine: An Example of a Chemical Method in Nutrition 521
 References 523
 Appendix 525

Chapter 2 Principles of Food Toxic Analysis 527
G. de Saint Blanquat and R. Derache

2.1. Heavy Metals 528
2.2. Mycotoxins 532
2.3. Pesticides 534
2.4. Nitrates and Nitrites 537
2.5. Nitrosamines 540
2.6. Conclusion 543
 References 543
 Additional References 545

Chapter 3 Techniques of Mutagenicity Analysis 547
(Y. Courtois and B. Molinier

3.1. Introduction 547
3.2. Bases of Mutagenicity 547
3.3. Detection of Mutagens 550
3.4. Recommendations, Strategies and Regulations Concerning Assays for Genetic Toxicology 562
 References 563
 Additional references 565

Index 567