Standalone Photovoltaic (PV) Systems for Disaster Relief and Remote Areas

Salahuddin Qazi

State University of New York Polytechnic Institute, Utica, NY, United States

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Contents

Pro Ac	eface knowledgments	xiii xvii
1.	Photovoltaics for Disaster Relief and Remote Areas	
	1.1 Introduction	1
	1.2 Type of Natural Disasters	2
	1.3 Electrical Power System/Grid	4
	1.3.1 Impact of Disasters on Power Systems/Grid	5
	1.4 Causes of Power Outages	6
	1.4.1 Cost of Power Outages	9
	1.5 Energy Needs in the Aftermath of Disasters	9
	1.5.1 Backup Power for Emergency Shelters	10
	1.5.2 Emergency Lighting	11
	1.5.3 Communications	11
	1.5.4 Transportation	12
	1.5.5 Portable Systems and Battery Charging for Miscellaneous	
	Applications	14
	1.6 Energy Needs in Remote and Off-Grid Areas	17
	1.7 Energy Need of Remote Areas in Developed Countries	17
	1.8 Energy Need of Remote Areas in the Developing Countries	19
	1.9 Photovoltaics for Disasters Relief and Remote Areas	22
	1.10 Photovoltaics Around the World	24
	1.11 Growth and Forecast of Photovoltaic Markets	26
	Bibliography	28
2.	Fundamentals of Standalone Photovoltaic Systems	
	2.1 Introduction	31
	2.2 Types of Standalone PV Systems	31
	2.2.1 Battery Storage Hybrid Standalone PV Systems	33
	2.3 Types of Battery Storage Standalone PV Systems	33
	2.4 Advantages and Disadvantages of Standalone PV Systems	35
	2.4.1 Advantages	35
	2.4.2 Disadvantages	35
	2.5 Applications of Standalone PV Systems	35
	2.6 Components of Standalone PV System	36
	2.6.1 Solar Source or Solar Radiation	37
	2.6.2 Photovoltaic Cells	40

2.6.3 PV Modules and Arrays	47
2.6.4 Charge Controller	51
2.0.4 Charge Controller	51
2.6.5 PVVM Inree Stage Controller	23
2.6.6 Battery Storage for Standalone PV System	55
2.6.7 Inverter for Standalone PV Systems	64
2.7 Sizing Methodologies of Standalone PV Systems	67
2.7.1 Estimation of Electric Load	68
2.7.2 Sizing of Battery Bank	69
2.7.3 Sizing of PV Modules	70
2.7.4 Sizing of Charge Controller	72
2.7.5 Sizing the Inverter	73
2.8 Modeling and Simulation of PV Systems and Software Tools	74
2.8.1 Hybrid Optimization Model for Electric Renewables	76
2.8.2 Photovoltaic Software	76
2.8.3 Transient System Simulation Program	77
2.8.4 Photovoltaic Geographical Information System	77
2.8.5 PVWatts Calculator	78
Bibliography	79

3. Mobile Photovoltaic Systems for Disaster Relief and Remote Areas

3.1 Introduction	83
3.2 Solar-Powered Mobile Trailers	84
3.2.1 Features of Solar-Powered Mobile Trailers	84
3.2.2 Types of Solar-Powered Mobile Trailers	85
3.3 Examples of Mobile PV Systems for Disaster Relief and	
Remote Areas	86
3.3.1 Community-Based Mobile PV Systems	86
3.3.2 Mobile PV Systems for Power, Water Purification, and	
Communications	88
3.3.3 Mobile PV Systems for Medical Clinics and Remote Areas	91
3.3.4 Mobile PV Systems for Small Shelters and Illumination	94
3.3.5 Hand-Driven Solar Generator Cart	96
3.4 Case Study for Solar Cars	96
3.4.1 History of Solar Cars	97
3.4.2 Principles of Solar-Powered Car	99
3.4.3 Fully Solar-Powered Car	102
3.5 Case Study of Solar-Powered Airplane	103
3.5.1 Power Received by Airplane	104
3.5.2 History of Solar-Powered Plane	104
3.5.3 Types of Solar-Powered Planes	105
3.5.4 Solar-Powered Manned Plane for Day and Night	106
3.5.5 Solar Impulse HB-SB2 (Solar Impulse 2)	106
3.5.6 Challenges of Solar Powered Manned Planes	110
Bibliography	110

- -

150

4.	an	d Rei	note Areas	
	4.1	Intro	duction	113
	4.2	Featu	ires of Portable Solar Systems	113
	4.3	Type	s of Portable PV Systems	114
		4.3.1	Compact Portable PV Systems	114
		4.3.2	Solar Backpack Systems	118
		4.3.3	Solar Suitcase/Briefcase Systems	120
		4.3.4	Foldable PV Systems	124
	4.4	Case	Study: A Portable System for Disaster Relief and	
		Remo	ote Areas	127
		4.4.1	Light for Schools and Community	128
		4.4.2	Light and Clean Water for Community	129
	4.5	Case	Study: We Care Solar Suitcase (Yellow) for Medical	
		Relie	f in Remote Areas	130
		4.5.1	Case Study: We Share Solar Suitcase (Blue) for Lighting	
			in Schools and Orphanages	131
	Bib	liogra	phy	136
5.	Fix an	ed St d Rer	andalone PV Systems for Disaster Relief note Areas	
	5.1	Intro	duction	139
	5.2	Solar	-Powered Water Pumping Systems	140
		5.2.1	Direct-Coupled Standalone Solar-Powered Water Pumping	
			Systems	141
		5.2.2	Battery-Coupled Standalone Solar-Powered Water Pumping System	142
	5.3	Desig	n of a Standalone Solar-Powered Pumping System	
		in Eig	ht Steps	143
		5.3.1	Step 1: Determine Whether the Pump Is Surface or	
			Submersible	144
		5.3.2	Step 2: Determine the Required Water Flow	145
		5.3.3	Step 3: Pressure Needed to Move Water From Source to	
			Destination	145
		5.3.4	Step 4: Determine the Right Size of Pipe	146
		5.3.5	Step 5: Select a Pump That Will Provide the Required	
			Flow and Pressure	147
		5.3.6	Step 6: Determine Power Needs for the Desired Pump	
			and Size of PV Systems	147
		5.3.7	Step 7: Selecting the Correct Solar Array Mounting	148
		5.3.8	Step 8: Using Water Storage and Water Level Sensor	149
	5.4	Appli	cations of Standalone Solar-Powered Water Pumping	
		Syste	ms	150
		5.4.1	Standalone PV System for Water Supply to Homes or	
			Villages	150

Portable Standalone PV Systems for Disaster Relief A

5.4.2 Standalone PV System for Drip Irrigation System	151
5.4.3 Standalone PV System for Livestock Watering	152
5.5 Standalone PV Systems for Water Purification	153
5.5.1 Standalone PV Systems for Ultraviolet Sterilization	154
5.5.2 Standalone PV System for Reverse Osmosis Water Purification	157
5.5.3 Standalone PV Systems for Ultrafiltration	160
5.6 Direct Solar Water Treatment for Purification of Water	162
5.6.1 Solar Water Disinfection	162
5.6.2 Solar Pasteurization	163
5.6.3 Solar Water Distillation Using Solar Stills	165
5.7 Case Study of Fixed Standalone PV Systems for Mobile	
Communications in Remote Areas	166
5.7.1 Solar-Powered Base Stations	167
5.7.2 Benefits of Solar-Powered Base Stations	169
5.7.3 Examples of Solar-Powered Base Stations for Disasters	
and Remote Areas	170
5.7.4 Solar-Powered Base Station in India	171
Bibliography	

6. PV Systems Affordability, Community Solar, and Solar Microgrids

6.1	Introduction	177
6.2	Affordable PV Systems Programs in United States	178
	6.2.1 California's Innovative SASH Program	179
	6.2.2 District of Columbia's Renewable Energy Rebate Program	179
	6.2.3 GRID Alternatives	179
	6.2.4 US Department of Energy Borrowers Guide for Financing	
	Solar Energy Systems	180
6.3	Affordable PV Systems Programs for Developing Countries	181
	6.3.1 CleanStart	182
	6.3.2 Renewable Energy Microfinance and Microenterprise	
	Program	182
	6.3.3 REMMP Partnership in India	183
	6.3.4 REMMP Partnership in Haiti	184
	6.3.5 REMMP Partnership in Uganda	185
	6.3.6 Companies and Organization Bringing Solar Energy	
	to Developing Countries	185
6.4	Community Solar for Affordability and Resilience	186
	6.4.1 Community Solar in United States	187
	6.4.2 Making a Solar Garden	188
	6.4.3 Challenges of Solar Gardens	190
6.5	Solar Microgrid for Resilience and Disasters	190
	6.5.1 Benefits of a Microgrid	191
	6.5.2 Challenges of Developing Solar Microgrids	192
6.6	Case Study of Solar Microgrids in India	192
	6.6.1 Solar Microgrid (Funded by Government of India) for Rural	
	Electrification in the Remote Areas	193

		6.6.2 System Rating of Indian Solar Microgrid for Rural	
		Electrification	194
		6.6.3 Benefits of Solar Microgrid in Remote Areas of India	194
		6.6.4 Challenges of Solar Microgrid in Remote Areas of India	194
		6.6.5 Solar Microgrid for Rural Electrification in Remote	
		Areas of India (Completed With the Help of a Global NGO)	195
	6.7	Case Study of Solar Microgrids in United States	196
		6.7.1 Case Study of the UCSD Microgrid	196
		6.7.2 Master Controller for UCSD Microgrid	198
		6.7.3 Energy Storage for UCSD Microgrid	198
		6.7.4 Challenges of UCSD Microgrid	200
		6.7.5 Solar Microgrid With Battery Storage for Emergency	
		Shelters in United States	200
	Bib	liography	200
7.	So	lar Thermal Electricity and Solar Insolation	
	7.1	Solar Thermal Electricity	203
	7.2	Advantages of CSP	205
		7.2.1 Disadvantages	205
	7.3	Principles of CSP Systems	205
		7.3.1 Solar Collectors	206
		7.3.2 Heat Transfer Fluids	207
		7.3.3 Thermal Energy Storage (Storage Tank)	208
		7.3.4 Turbine	209
	7.4	CSP Around the World	209
		7.4.1 Largest CSP Plants of the World in Operation	211
	7.5	Solar Thermal Technologies	212
		7.5.1 Parabolic Trough Systems	212
		7.5.2 Power Tower Systems	215
		7.5.3 Linear Fresnel Reflector System	218
		7.5.4 Parabolic Dish Engine	220
	7.6	Solar Insolation/Radiation	222
	7.7	Measurement of Solar Radiation/Insolation	224
		7.7.1 Pyreheliometer	225
		7.7.2 Pyranometer	226
		7.7.3 Campbell-Stokes Recorder	228
		7.7.4 Satellite-Based Images	229
	7.8	Online Databases for Solar Radiation	231
		7.8.1 NASA's SSE 6.0 for Global Locations	231
		7.8.2 SolarGIS Web Services	231
		7.8.3 NREL Renewable Resource Data Center	232
		7.8.4 RETScreen	233
		7.8.5 Estimating Solar Insolation for Global Locations Using	
		the Photovoltaic Education Network	234
	Bib	liography	235

Appendix: Appendix on PV Systems for Disaster Relief and in Remote Areas 239 Index 279