

Niklaus Kläntschi, Peter Lienemann, Peter Richner, Heinz Vonmont

Elementanalytik

Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen

Inhaltsverzeichnis

Vo	orwort	V
In	haltsverzeichnis	VII
Al	bkürzungen	XI
1	Einleitung	
	1.1 Analytische Chemie: die Fragestellung	
	1.2 Das modulare Konzept instrumenteller Methoden	
	1.2.1 Die Provokation	
	1.2.2 Die Reaktion	
	1.2.3 Die Detektion	
	1.2.4 Umsetzung in die Praxis	14
2	Systematik einer Analyse	
	2.1 Probenahme	
	2.2 Wahl der analytischen Methode	
	2.3 Probenvorbereitung	
	2.4 Messung, Datenverarbeitung	
	2.5 Interpretation analytischer Resultate	31
3	Kenngrössen spektrometrischer Methoden	33
	3.1 Das Spektrum	33
	3.2 Linien- und Untergrundintensität	
	3.3 Die Kalibrierung	38
	3.4 Präzision und Richtigkeit	
	3.5 Nachweisgrenzen	49
4	Spektrometrische Methoden der Elementanalyse	55
	Zerstörende Methoden	55
	4.1 Probeneinführungssysteme für zerstörende Methoden	
	4.1.1 Flüssige Proben	57
	4.1.2 Gasförmige Proben (Hydrid- und Kaltdampftechnik)	

4.2		absorptionspektrometrie (AAS)	
	4.2.1	1	
		Provokation, Reaktion, Detektion	
		Apparativer Aufbau	
	4.2.4	Wichtige Einflussparameter in der AAS	78
		Untergrundkompensation	
	4.2.6	Atomisierung mit chemischen Flammen (Flammen-AAS)	90
	4.2.7	Elektrothermale Atomisierung (ETA-AAS)	90
	4.2.8	Spezielle Probeneinführungstechniken	92
	4.2.9	Kalibrierung	93
	4.2.10	Vor- und Nachteile der AAS	94
4.3	Atom	emission (ICP-OES)	97
	4.3.1	Instrumenteller Aufbau eines Plasma-Emissionsspektrometers	99
	4.3.2	Provokation	111
	4.3.3	Reaktion	113
	4.3.4	Detektion	118
	4.3.5	Charakteristische Merkmale der	
		Plasma-Atomemissionsspektrometrie	119
		Typische Anwendungen	
4.4	Plasm	a-Massenspektrometrie (ICP-MS)	129
	4.4.1		129
	4.4.2	Instrumentelle Grundlagen	130
	4.4.3	Datenaquisition und Kalibrierung	133
	4.4.4	Matrixeffekte	136
	4.4.5	Isotopenverdünnungsanalyse	138
	4.4.6	Halbquantitative Übersichtsanalysen	140
	4.4.7	Quantitative Analysen	143
	4.4.8	Ausblick	144
Nic	htzers	törende Methoden	147
4.5	Röntg	enfluoreszenz (XRF)	147
	4.5.1	Röntgenfluoreszenzspektren	149
		Instrumenteller Aufbau des wellenlängendispersiven	
		Röntgenfluoreszenz-Spektrometers	154
	4.5.3	Allgemeine Charakteristiken der wellenlängendispersiven	
		Röntgenfluoreszenz	158
	4.5.4	•	164
	4.5.5	Reaktion	
	4.5.6	Detektion	176
	4.5.7	Quantitative Analysen	178
	7.5.7		
М	thode	n zur Analyse von Elementspezies	185
7410	Lanar	achromatographie (IC) and Kapillarelektrophorese (CE)	185

	5.1.1 Prinzip der Ionenchromatographie (IC)	187
	5.1.2 Anionenaustausch-Chromatographie	192
	5.1.3 Detektionsarten	198
	5.1.4 Quantitative Analysen	
	5.1.5 Prinzip der Kapillarelektrophorese (CE)	204
	5.2 Elektrochemische Methoden	207
	5.2.1 Grundlagen	
	5.2.2 Potentiometrie	209
	5.2.3 Polarographie und Voltammetrie	
	5.3 Röntgendiffraktion (XRD)	221
	5.3.1 Röntgendiffraktogramm	222
	5.3.2 Instrumenteller Aufbau eines Pulver-Diffraktometers	
	5.3.3 Provokation	
	5.3.4 Reaktion	232
	5.3.5 Detektion	234
	5.3.6 Charakteristische Merkmale der Pulver-Diffraktometrie	235
6	Oberflächen- und Lokalanalysen an Festkörpern	241
•	6.1 Oberflächencharakterisierung	
	6.2 Instrumentelle Methoden	245
	6.2.1 Messanforderungen	245
	6.2.2 Bildgebende Methoden	246
	6.2.3 Chemische Identifizierung von Oberflächen	
7	Weitere Methoden	251
•	7.1 Methoden mit thermischer Provokation	
	7.1.1 Atomfluoreszenzspektrometrie (AFS)	
	7.1.2 Verbrennungsanalysen (VA) für die Elementanalytik	252
	7.1.3 Glimmentladungsspektrometrie (GD-OES, GD-MS)	255
	7.2 Methoden mit Teilchenbeschuss als Provokation	256
	7.2.1 Kernphysikalische Analysenmethoden	
	7.2.2 Neutronenaktivierungsanalyse (NAA)	
	7.3 Methoden mit elektromagnetischer Strahlung als Provokation	258
8	Vergleichende Bewertung instrumentalanalytischer Methoden	261
-	8.1 Erfassbarkeit von Elementen und Elementspezies	262
	8.2 Probenart und -form	265
	8.3 Nachweisgrenzen und Arbeitsbereich	266
	8.4 Präzision und Richtigkeit	267
	8.5 Messkapazität	

Χ	Inhaltsverzeichnis
^	II II Iditavei Zeioi II IIa

10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick	273 274 278 279 281 285
9.1 Qualitätssicherung (QS) 9.2 Validierung 9.3 Referenzmaterialien 9.4 Messunsicherheit 9.5 Laborautomatisierung 9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	274 278 279 281 285
9.1 Qualitätssicherung (QS) 9.2 Validierung 9.3 Referenzmaterialien 9.4 Messunsicherheit 9.5 Laborautomatisierung 9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	274 278 279 281 285
9.2 Validierung 9.3 Referenzmaterialien 9.4 Messunsicherheit 9.5 Laborautomatisierung 9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	
9.3 Referenzmaterialien 9.4 Messunsicherheit 9.5 Laborautomatisierung 9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	
9.5 Laborautomatisierung 9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	285
9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	
9.6 Chemometrie 10 Standortbestimmung 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem	
 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	
 10.1 Historische Entwicklung 10.2 Stand der Technik 10.3 Zukünftige Entwicklung, Ausblick 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	
 10.1 Historische Entwicklung. 10.2 Stand der Technik. 10.3 Zukünftige Entwicklung, Ausblick. 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser. 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage. 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	295
 10.2 Stand der Technik. 10.3 Zukünftige Entwicklung, Ausblick. 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	295
 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	299
 11 Fallbeispiele 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	301
 11.1 Bestimmung von Zink in einem Abwasser 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	
 11.2 Analyse einer Elektrofilterasche (EFA) aus einer Müllverbrennungsanlage 11.3 Bestimmung von Spurenelementen und organisch gebundenem 	
Müllverbrennungsanlage	305
11.3 Bestimmung von Spurenelementen und organisch gebundenem	
	308
Chlor (z.B. in Form von PCB in einem Mineralöl)	
11.4 Bestimmung von Spurenverunreinigungen in Nickel	
11.5 Analyse von historischen Kupferlegierungen	
11.6 Qualitative Charakterisierung eines unbekannten Feststoffes	
11.7 Analyse einer biologischen Probe	