N. BOURBAKI

ELEMENTS OF MATHEMATICS

Algebra II

Chapters 4-7

Translated by P. M. COHN & J. HOWIE

Table of contents

CHAPTER	IV. — POLYNOMIALS AND RATIONAL FRACTIONS	IV. 1
§ 1.	Polynomials	IV. 1
	1. Definition of polynomials	IV. 1
	2. Degrees.	
	3. Substitutions.	
	4. Differentials and derivations.	
	5. Divisors of zero in a polynomial ring	
	6. Euclidean division of polynomials in one indeterminate	
	7. Divisibility of polynomials in one indeterminate	
	8. Irreducible polynomials	IV.13
§	2. Zeros of polynomials	IV.14
	1. Roots of a polynomial in one indeterminate. Multipli-	
	city	IV. 14
	2. Differential criterion for the multiplicity of a root	IV. 17
	3. Polynomial functions on an infinite integral domain.	
§3.	Rational fractions	IV.19
	1. Definition of rational fractions	IV.19
	2. Degrees	
	3. Substitutions	
	4. Differentials and derivations	
§4.	Formal power series	IV.24
	1. Definition of formal power series. Order	IV.24
	2. Topology on the set of formal power series. Summable	
	families.	IV.25
	3. Substitutions.	
	4. Invertible formal power series	
	5. Taylor's formula for formal power series	IV.31
	6. Derivations in the algebra of formal power series	IV.32
	7. The solution of equations in a formal power series ring.	IV. 35
	8. Formal power series over an integral domain.	IV.38
	9. The field of fractions of the ring of formal power series in	
	one indeterminate over a field	
]	10. Exponential and logarithm	

§ 5. Symmetric tensors and pol	lynomial mappings	IV.41
1. Relative traces		IV.41
	e tensors	
3. Product for symmetric	tensors	IV.43
4. Divided powers		IV.45
	r a free module	
	ic tensors	
	M) and S(M)	
	iial mappings	
10. Polynomial mappings	(t) T3 (2.5) 40T	IV.57
11. Relations between S(M	(*), $TS(M)^{*gr}$ and $Pol(M, A)$	IV.59
§ 6. Symmetric functions		IV.61
1. Symmetric polynomials.		IV.61
	etions	
	er series	
	the roots of a polynomial	
6. The resultant		IV.75
7. The discriminant		IV.81
Exercises on § 1		IV.86
Exercises on § 2		IV.87
Exercises on § 3		IV.89
Exercises on § 4		IV.90
Exercises on § 5		
Exercises on § 6		
Table		IV.103
	D.C.	***
CHAPTER V. — COMMUTATIVE FIEL		
§ 1. Prime fields. Characterist	ic	V.I
1. Prime fields		V.I
	and of a field	
	characteristic p	
	eristic p	
	of a field. Perfect fields	
6. Characterization of poly	ynomials with zero differential	V.7
§2. Extensions		V.9
	tension	
	L	
	ions	
• •		
_		
1. Algebraic elements of a	an algebra	V.15

TABLE OF CONTENTS

		 Algebraic extensions. Transitivity of algebraic extensions. Fields that are relatively algebraically closed in an extension field. 	
8	4.	Algebraically closed extensions	V.19
		 Algebraically closed fields Splitting extensions Algebraic closure of a field 	V.21
§	5.	p-radical extensions	V.24
		 ^-radical elements p-radical extensions 	V.24
§	6.	Etale algebra	V.26
		 Linear independence of homomorphisms Algebraic independence of homomorphisms Diagonalizable algebras and etale algebras 	V.26 V.28 V.28
		 Subalgebras of an etale algebra. Separable degree of a commutative algebra. Differential characterization of etale algebras. Reduced algebras and etale algebras. 	V.31 V.33
§	7.	Separable algebraic extensions 1. Separable algebraic extensions	V.36 V.36
		 Separable polynomials. Separable algebraic elements. The theorem of the primitive element. 	V.39 V.40
		5. Stability properties of separable algebraic extensions 6. A separability criterion	
		7. The relative separable algebraic closure.8. The separable closure of a field.9. Separable and inseparable degrees of an extension of	V.45 V.45
		finite degree	V.46
§	8.	Norms and traces	V.47
		1. Recall	
		 Norms and traces in etale algebras. Norms and traces in extensions of finite degree. 	V.47 V 50
8	Q	Conjugate elements and quasi-Galois extensions	
8	٦.	Extension of isomorphisms.	
		Conjugate extensions. Conjugate elements.	V.52
		3. Quasi-Galois extensions.4. The quasi-Galois extension generated by a set	V.53
§	10). Galois extensions	V.56
		1. Definition of Galois extensions.	
		2. The Galois group.3. Topology of the Galois group.	V.58 V.60

4. Galois descent	V.62
5. Galois cohomology	V.64
6. Artin's theorem	
7. The fundamental theorem of Galois theory	
8. Change of base field	
9. The normal basis theorem	
10. Finite F-sets and etale algebras	
11. The structure of quasi-Galois extensions	V.76
§ 11. Abelian extensions	V.77
1. Abelian extensions and the abelian closure	V.77
2. Roots of unity	V.78
3. Primitive roots of unity	
4. Cyclotomic extensions	
5. Irreducibility of cyclotomic polynomials	
6. Cyclic extensions	
7. Duality of Z/rcZ-modules	
8. Kummer theory	
9. Artin-Schreier theory	
§12. Finite fields	V.93
1. The structure of finite fields	
2. Algebraic extensions of a finite field.	V.94
3. The Galois group of the algebraic closure of a finite	
field	
4. Cyclotomic polynomials over a finite field	V.97
§ 13. p-radical extensions of height s= 1	V.98
1. />-free subsets and /»-bases	V.98
2. Differentials and /?-bases	V.100
3. The Galois correspondence between subfields and Lie	
algebras of derivations	V.104
§ 14. Transcendental extensions	V.106
1. Algebraically free families. Pure extensions	V.106
2. Transcendence bases.	
3. The transcendence degree of an extension	
4. Extension of isomorphisms	V.111
5. Algebraically disjoint extensions	V.112
6. Algebraically free families of extensions	
7. Finitely generated extensions	V.I 17
§ 15. Separable extensions	V.118
1. Characterization of the nilpotent elements of a ring	V.118
2. Separable algebras	
3. Separable extensions	
4. Mac Lane's separability criterion	
5. Extensions of a perfect field	
6. The characterization of separability by automorphisms	V.125

§ 16. Differential criteria of separability	V.127
1. Extension of derivations: the case of rings	V.127
2. Extension of derivations: the case of fields	V.128
3. Derivations in fields of characteristic zero.	V.130
4. Derivations in separable extensions	
5. The index of a linear mapping	V.132
6. Differential properties of finitely generated extensions .	V.133
7. Separating transcendence bases	
§ 17. Regular extensions	
1. Complements on the relative separable algebraic clo-	
sure	V 137
2. The tensor product of extensions.	
3. Regular algebras.	
4. Regular extensions.	
5. Characterization of regular extensions.	
6. Application in composite extensions.	
Exercises on § 1.	V.145
Exercises on § 2.	
Exercises on § 3.	
Exercises on § 4.	
Exercises on § 5.	
Exercises on § 6.	
Exercises on § 7.	
Exercises on § 8.	
Exercises on § 9.	
Exercises on § 10.	
Exercises on § 11.	V.160
Exercises on § 12	V.166
Exercises on § 13.	V.170
Exercises on § 14	V.171
Exercises on § 15.	V.175
Exercises on § 16.	V.177
Exercises on § 17	
Historical note (chapters IV and V)	V.182
Bibliography.	
CHAPTER VI. — ORDERED GROUPS AND FIELDS	VI 1
§ 1. Ordered groups. Divisibility	VI.1
1. Definition of ordered monoids and groups	
2. Pre-ordered monoids and groups	
3. Positive elements.	
4. Filtered groups	
5. Divisibility relations in a field	
6. Elementary operations on ordered groups	
7. Increasing homomorphisms of ordered groups	

8. Suprema and infima in an ordered group	VI.8
9. Lattice-ordered groups.	
10. The decomposition theorem	
11. Positive and negative parts	
12. Coprime elements.	
13. Irreducible elements.	
§2. Ordered fields	
1. Ordered rings.	
2. Ordered fields	
3. Extensions of ordered fields.	
4. Algebraic extensions of ordered fields	
5. Maximal ordered fields.6. Characterization of maximal ordered fields. Euler-	
Lagrange theorem	VI.26
7. Vector spaces over an ordered field	VI.28
Exercises on § 1	
Exercises on § 2.	
CHAPTER VII. — MODULES OVER PRINCIPAL IDEAL DOMAINS	VII. 1
§ 1. Principal ideal domains	VII. 1
1. Definition of a principal ideal domain	VII. 1
2. Divisibility in principal ideal domains.3. Decomposition into irreducible factors in principal ideal	VII. 1
domains	VII.3
4. Divisibility of rational integers.5. Divisibility of polynomials in one indeterminate over a	VII.5
field	VII.5
§ 2. Torsion modules over a principal ideal domain	
1. Modules over a product of rings.	
2. Canonical decomposition of a torsion module over a	
principal ideal domain	VII.7
3. Applications: I. Canonical decompositions of rational	
numbers and of rational functions in one indeterminate	VII. 10
	VIII 10
4. Applications : II. The multiplicative group of units of the integers modulo <i>a</i>	VII.12
integers modulo a	
§ 3. Free modules over a principal ideal domain	VII. 14
§ 3. Free modules over a principal ideal domain § 4. Finitely generated modules over a principal ideal domain	VII. 14 VII. 15
§ 3. Free modules over a principal ideal domain	VII. 14 VII.15 VII.15
§ 3. Free modules over a principal ideal domain. § 4. Finitely generated modules over a principal ideal domain 1. Direct sums of cyclic modules. 2. Content of an element of a free module.	VII. 14 VII.15 VII.15 VII.16
§ 3. Free modules over a principal ideal domain	VII. 14 VII.15 VII.15 VII.16 VII.18

6. Linear mappings of free modules, and matrices over a	
principal ideal domain	VII.21
7. Finitely generated abelian groups	
8. Indecomposable modules. Elementary divisors	VII.23
9. Duality in modules of finite length over a principal ideal	
domain	VII.25
§5. Endomorphisms of vector spaces	VII.28
1. The module associated to an endomorphism	VII.28
2. Eigenvalues and eigenvectors	
3. Similarity invariants of an endomorphisms.	
4. Triangularisable endomorphism	
5. Properties of the characteristic polynomial: trace and	
determinant	VII .36
6. Characteristic polynomial of the tensor product of two	
endomorphisms	VII .39
7. Diagonalisable endomorphisms	VII.40
8. Semi-simple and absolutely semi-simple endomor-	
phisms	VII.41
9. Jordan decomposition	
Exercises on § 1.	VII 48
Exercises on § 2.	
Exercises on § 3.	
Exercises on § 4.	
Exercises on § 5.	
Historical note (Chapters VI and VII).	
Bibliography	
Index of notations.	
Index of terminology	
Table of contents	