

Operations Research Verfahren and Consultant Consultant

Von Dr. Klaus Neumann
o. Professor für Operations Research
an der Universität Karlsruhe

unter Mitwirkung von

Dr. Willi Hahn, wiss. Assistent an der Universität Köln und

Dr. Eckhard Höpfinger, wiss. Assistent an der Universität Karlsruhe

mit 38 Abbildungen und 101 Tabellen

Prinzipieller Aufbau der alogrithmischen Beschreibungen von Verfahren 13
Verzeichnis der algorithmischen Beschreibungen.
Liste von häufig verwendeten Bezeichnungen
KAPITEL 1 LINEARE OPTIMIERUNG
§1 Beispiele, Grundbegriffe. 19
1.1 Zwei Beispiele.
12 Das Standardproblem der linearen Optimierung. 21
13 Grundlegende Begriffe und Sätze. 24
§2 Das Simplexverfahren
2.1 Eckenaustauschschritt
2.2 Prinzip des Simplexverfahrens 41
2.3 Bestimmung einer Anfangsecke. 44
2.4 Verallgemeinertes Simplexverfahren 45
§3 Das Simplextableau 50
3.1 Aufstellung des Simplextableaus 50
3.2 Durchführung eines Austauschschrittes 51
3.3 Aufstellung des Anfangstableaus 53
3.4 Zahlenbeispiele. 57
3.5 Algorithmische Beschreibung des Simplexverfahrens 61
§4 Dualität. 63
4.1 Dualität beim Standardproblem (L) 63
4.2 Dualität bei anderen linearen Optimierungsproblemen 70
4.3 ökonomische Interpretation der Dualität 73
§5 Modifikationen und Sonderformen des Simplexverfahrens 79
5.1 Nachträgliches Hinzufügen einer Variablen. 79
5.2 Variablen ohne Vorzeichenbeschränkung. 81
5.3 Untere und obere Grenzen für einzelne Variablen. 84
5.4 Die duale Simplexmethode 91
5.5 Die Dreiphasenmethode 97
5.5.1 Prinzip der Dreiphasenmethode. 97
5.5.2 Algorithmische Darstellung der Dreiphasenmethode 99
5.5.3 Zahlenbeispiel 104
5.6 Die revidierte Simplexmethode. 107
5.6.1 Das adjungierte Problem und die Inverse der Basismatrix 107
5.6.2 Rechenoperationen bei der revidierten Simplexmethode 109
5.6.3 Die Produktform der Inversen 111

			Algorithmischer Ablauf der revidierten Simplexmethe				113
			Zahlenbeispiel				.121
		gewöh	n-				
			liehen Simplexverfahren	٠	÷		.124
	5.7	Die sy	mmetrische revidierte Simplexmethode				.124
	5.8	Dekon	npositionsverfahren			•	.131
		5.8.1 I	Problemstellung			ė	.131
		5.8.2	Aufstellung des Ersatzproblems	·			.132
		5.8.3	Vorbemerkungen zur Lösung des Ersatzproblems.				134
		5.8.4	Durchführung eines Austauschschrittes bei der Löst	ung	des I	Er-	
		5	satzproblems				137
			Bestimmung einer zulässigen Anfangsbasislösung				
			problems				139
			Algorithmischer Ablauf der Dreiphasenmethode bei				
			positionsverfahren.				.147
		_	Der Fall nichtbeschränkter zulässiger Bereiche von (1				151
			Beispiel	,			154
§ 6	Para		che lineare Optimierung				162
0 -			ion des Zielfunktionsvektors c.				162
			ion des Vektors b in den Nebenbedingungen				165
			ivitätsanalyse				168
§ 7			portproblem				171
ο,			mstellung				171
			nmung einer zulässigen Anfangslösung (Nordwesteck				174
			epping-Stone-Methode				177
			ibeispiel				180
			zungen zum Transportproblem	•	•	•	183
			uordnungsproblem.	•	•	•	191
	7.0	Dus Z	dordinangsproblem	٠	•	٠	.171
KA	APIT	EL 2	SPIELTHEORIE	ē		ė	194
88	7w	einerson	nen-Nullsummenspiele				195
30			begriffe endlicher Zweipersonen-Nullsummenspiele				195
			punktsspiele				196
			chte Strategien				199
	84	Haunt			•	•	201
	8.5	Ontim	satz der Spieltheorie ale Strategien und ihre Bestimmung		•	•	204
		_	nanz von Strategien			•	206
			g von (2 x «)- und (m x 2)-Matrixspielen				209
			lliche Zweipersonen-Nullsummenspiele.		٠		212
80			ummen- und Mehrpersonen-Spiele				214
87			begriffe endlicher Zweipersonen-Nichtnullsummensp			•	214
			rative und nichtkooperative Spiele, Auszahlungsdia			•	214
		_		_		•	
	9.3	Losun	g nichtkooperativer Spiele				217

§

9	9.4 Lösung kooperativer Spiele	.219
	0.5 Mehrpersonenspiele.	.220
KAF	PITEL 3 NICHTLINEARE OPTIMIERUNG	221
§ 10	Einführung in die nichtlineare Optimierung	.222
	10.1 Aufgabenstellung.	222
	10.2 Durch Nichtlinearitäten bedingte Schwierigkeiten	222
§ 11	Zur Theorie der nichtlinearen Optimierung	.229
	11.1 Konvexe Optimierungsprobleme	229
	11.2 Der Satz von KÜHN und TUCKER	.233
	11.3 Quadratische Optimierung	236
§12	Lösungsverfahren der quadratischen Optimierung	240
	12.1 Das Verfahren von WOLFE	
	12.2 Das Verfahren von BEALE	
	12.2.1 Prinzip der Methode von BEALE	
	12.2.2 Vorphase und erster Austauschschritt	
	12.2.3 Durchführung eines allgemeinen Austauschschrittes	
	12.2.4 Zur Konvergenz des Verfahrens, Vergleich mit dem Algorith-	
	mus von WOLFE	
	12.2.5 Algorithmischer Ablauf des BEALE-Verfahrens	264
	12.2.6 Zahlenbeispiel.	271
§13	Lösungsverfahren der konvexen Optimierung	274
	13.1 Gradienten verfahren.	274
	13.2 Die Methode der reduzierten Gradienten	279
	13.2.1 Problemstellung, reduzierter Gradient	279
	13.2.2 Durchführung eines Austauschschrittes	282
	13.2.3 Zur Rechentechnik und Konvergenz des Verfahrens	
	13.2.4 Zahlenbeispiel	
	13.2.5 Algorithmische Beschreibung des Verfahrens der reduzierten	
	Gradienten	
	13.2.6 Die verallgemeinerte reduzierte Gradientenmethode	
	13.3 Methoden der Straffunktionen	296
	13.3.1 Äußere Straffunktionen	296
	13.3.2 Innere Straffunktionen	298
	13.4 Schnittebenenverfahren	
	13.4.1 Das Verfahren von KELLEY.	300
	13.4.2 Die Schnittebenenverfahren von KLEIBOHM und VEINOTT und	
	von ZOUTENDIJK	304
	13.5 Abbruchkriterien	307
	13.6 Separable Optimierung	308
IZ A T		
	PITEL 4 GANZZAHLIGE OPTIMIERUNG	311
§14	Allgemeine ganzzahlige Optimierung	
	14.1 Problemstellung	312

14.2	2 GOMC	DRY-Verfahren.	.313
	14.2.1	Überblick über die GOMORY-Verfahren	.313
	14.2.2	Das rein-ganzzahlige Verfahren von GOMORY (GOMORY II) .	314
	14.2.3	Bestimmung einer lexikographisch dual zulässigen ganz-	
		zahligen Anfangsbasislösung	322
	14.2.4	Algorithmischer Ablauf des Verfahrens GOMORY II	325
	14.2.5	Zahlenbeispiel	329
§15 Bin	äre Opti	mierung.	.333
15.1	Das al	llgemeine Branch-and-Bound-Prinzip	333
15.2	Der a	dditive Algorithmus von BALAS	339
	15.2.1	Vorbemerkungen	339
	15.2.2	Grundprinzip des Algorithmus	341
	15.2.3	Zusammenhang mit dem allgemeinen Branch-and-Bound-	
		Prinzip	344
	15.2.4	Beschreibung des BALAS-Algorithmus	346
	15.2.5	Algorithmische Darstellung des BALAS-Verfahrens	351
	15.2.6	Zahlenbeispiel	.355
15.3	B Das R	ucksackproblem	356
	15.3.1	Problemstellung	356
	15.3.2	Beschreibung des Verfahrens von KOLESAR	.357
	15.3.3	Algorithmische Darstellung des Verfahrens von KOLESAR .	361
	15.3.4	Zahlenbeispiel	.366
15.4	4 Masch	inenbelegungsplanung	368
	15.4.1	Maschinenbelegungsplanung als ganzzahliges Optimierungs-	
		problem	368
	15.4.2	Der Algorithmus von JOHNSON für zwei Maschinen	370
Literatui	rverzeicl	hnis.	.373
Namen-	und Sa	chverzeichnis	374