Jacob Fraden

Handbook of Modern Sensors
Physics, Designs, and Applications

Fourth Edition
Contents

1 Data Acquisition 1
 1.1 Sensors, Signals, and Systems 1
 1.2 Sensor Classification 7
 1.3 Units of Measurements 11
 References 12

2 Sensor Characteristics 13
 2.1- Transfer Function 13
 2.1.1 Mathematical Model 14
 2.1.2 Functional Approximations 15
 2.1.3 Polynomial Approximations 16
 2.1.4 Sensitivity 17
 2.1.5 Linear Piecewise Approximation 18
 2.1.6 Spline Interpolation 19
 2.1.7 Multidimensional Transfer Functions 19
 2.2 Calibration 20
 2.2.1 Computation of Transfer Function Parameters 22
 2.2.2 Linear Regression 25
 2.3 Computation of Stimulus 26
 2.3.1 Computation from Linear Piecewise Approximation 26
 2.3.2 Iterative Computation of Stimulus (Newton Method) 28
 2.4 Span (Full-Scale Full Scale Input) 30
 2.5 Full-Scale Output 31
 2.6 Accuracy 31
 2.7 Calibration Error 34
 2.8 Hysteresis 35
 2.9 Nonlinearity 36
 2.10 Saturation 37
 2.11 Repeatability 38
 2.12 Dead Band 38
 2.13 Resolution 38

vii
3 Physical Principles of Sensing

3.1 Electric Charges, Fields, and Potentials 54

3.2 Capacitance 60
 3.2.1 Capacitor 62
 3.2.2 Dielectric Constant 63

3.3 Magnetism 67
 3.3.1 Faraday Law 69
 3.3.2 Solenoid 71
 3.3.3 Toroid 72
 3.3.4 Permanent Magnets 72

3.4 Induction 73

3.5 Resistance 77
 3.5.1 Specific Resistivity 79
 3.5.2 Temperature Sensitivity 80
 3.5.3 Strain Sensitivity 84
 3.5.4 Moisture Sensitivity 85

3.6 Piezoelectric Effect 86
 3.6.1 Ceramic Piezoelectric Materials 89
 3.6.2 Polymer Piezoelectric Films 93

3.7 Pyroelectric Effect 96

3.8 Hall Effect 103

3.9 Thermoelectric Effects 106
 3.9.1 Seebeck Effect 106
 3.9.2 Peltier Effect

3.10 SoundWaves 113

3.11 Temperature and Thermal Properties of Materials 116
 3.11.1 Temperature Scales 117
 3.11.2 Thermal Expansion 118
 3.11.3 Heat Capacity 120

3.12 Heat Transfer 121
 3.12.1 Thermal Conduction 122
 3.12.2 Thermal Convection 125
 3.12.3 Thermal Radiation 126
3.13 Light
 3.13.1 Light Polarization
 3.13.2 Light Scattering
3.14 Dynamic Models of Sensor Elements
 3.14.1 Mechanical Elements
 3.14.2 Thermal Elements
 3.14.3 Electrical Elements
 3.14.4 Analogies
References

4 Optical Components of Sensors
 4.1 Radiometry
 4.2 Photometry
 4.3 Windows
 4.4 Mirrors
 4.5 Lenses
 4.6 Fresnel Lenses
 4.7 Fiber Optics and Waveguides
 4.8 Concentrators
 4.9 Coatings for Thermal Absorption
 4.10 Nano-optics
References

5 Interface Electronic Circuits
 5.1 Input Characteristics of Interface Circuits
 5.2 Amplifiers
 5.2.1 Operational Amplifiers
 5.2.2 Voltage Follower
 5.2.3 Instrumentation Amplifier
 5.2.4 Charge Amplifiers
 5.3 Light-to-Voltage Converters
 5.4 Excitation Circuits
 5.4.1 Current Generators
 5.4.2 Voltage References
 5.4.3 Oscillators
 5.4.4 Drivers
 5.4.5 Optical Drivers
 5.5 Analog-to-Digital Converters
 5.5.1 Basic Concepts
 5.5.2 V/F Converters
 5.5.3 Dual-Slope Converters
 5.5.4 Successive Approximation Converter
 5.5.5 Resolution Extension
 5.6 Direct Digitization
References
7.3 Inductive and Magnetic Sensors
 7.3.1 LVDT and RVDT
 7.3.2 Eddy Current Sensors
 7.3.3 Transverse Inductive Sensor
 7.3.4 Hall Effect Sensors
 7.3.5 Magnetoresistive Sensors
 7.3.6 Magnetostrictive Detector

7.4 Optical Sensors
 7.4.1 Optical Bridge
 7.4.2 Proximity Detector with Polarized Light
 7.4.3 Fiber-Optic Sensors
 7.4.4 Fabry-Perot Sensors
 7.4.5 Grating Sensors
 7.4.6 Linear Optical Sensors

7.5 Ultrasonic Sensors

7.6 Radar Sensors
 7.6.1 Micropower Impulse Radar
 7.6.2 Ground Penetrating Radars

7.7 Thickness and Level Sensors
 7.7.1 Ablation Sensors
 7.7.2 Thin Film Sensors
 7.7.3 Liquid Level Sensors

7.8 Pointing Devices
 7.8.1 Optical Pointing Devices
 7.8.2 Magnetic Pickup
 7.8.3 Inertial and Gyroscopic Mice

References

8 Velocity and Acceleration

8.1 Accelerometer Characteristics
8.2 Capacitive Accelerometers
8.3 Piezoresistive Accelerometers
8.4 Piezoelectric Accelerometers
8.5 Thermal Accelerometers
 8.5.1 Heated Plate Accelerometer
 8.5.2 Heated Gas Accelerometer
8.6 Gyrosopes
 8.6.1 Rotor Gyroscope
 8.6.2 Monolithic Silicon Gyrosopes
 8.6.3 Optical (Laser) Gyrosopes
8.7 Piezoelectric Cables
8.8 Gravitational Sensors
References
9 Force, Strain, and Tactile Sensors

9.1 Strain Gauges

9.2 Tactile Sensors

9.2.1 Switch Sensors

9.2.2 Piezoelectric Sensors

9.2.3 Piezoresistive Sensors

9.2.4 MEMS Sensors

9.2.5 Capacitive Touch Sensors

9.2.6 Acoustic Touch Sensors

9.2.7 Optical Sensors

9.3 Piezoelectric Force Sensors

References

10 Pressure Sensors

10.1 Concepts of Pressure

10.2 Units of Pressure

10.3 Mercury Pressure Sensor

10.4 Bellows, Membranes, and Thin plates

10.5 Piezoresistive Sensors

10.6 Capacitive Sensors

10.7 VRP Sensors

10.8 Optoelectronic Pressure Sensors

10.9 Indirect Pressure Sensor

10.10 Vacuum Sensors

10.10.1 Pirani Gauge

10.10.2 Ionization Gauges

10.10.3 Gas Drag Gauge

10.10.4 Membrane Vacuum Sensors

References

11 Flow Sensors

11.1 Basics of Flow Dynamics

11.2 Pressure Gradient Technique

11.3 Thermal Transport Sensors

11.3.1 Hot-Wire Anemometers

11.3.2 Three-Part Thermoanemometer

11.3.3 Two-Part Thermoanemometer

11.3.4 Microflow Thermal Transport Sensors

11.4 Ultrasonic Sensors

11.5 Electromagnetic Sensors

11.6 Breeze Sensor

11.7 Coriolis Mass Flow Sensors

11.8 Drag Force Sensors

11.9 Dust and Smoke Detectors
11.9.1 Ionization Detector 424
11.9.2 Optical Detector 426
References 428

12 Acoustic Sensors 431
12.1 Resistive Microphones 432
12.2 Condenser Microphones 432
12.3 Fiber-Optic Microphone 434
12.4 Piezoelectric Microphones 435
12.5 Electret Microphones 437
1.2.6 Dynamic Microphones 439
12.7 Solid-State Acoustic Detectors 440
References 443

13 Humidity and Moisture Sensors 445
13.1 Concept of Humidity 445
13.2 Capacitive Sensors 448
13.3 Electrical Conductivity Sensors 452
13.4 Thermal Conductivity Sensor 455
13.5 Optical Hygrometer 456
13.6 Oscillating Hygrometer 458
References 459

14 Light Detectors 461
14.1 Introduction 461
14.2 Photodiodes 465
14.3 Phototransistor 471
14.4 Photoresistors 472
14.5 Cooled Detectors 475
14.6 Image Sensors 478
 14.6.1 CCD Sensor 479
 14.6.2 CMOS-Imaging Sensors 480
14.7 Thermal Detectors 481
 14.7.1 Golay Cells 482
 14.7.2 Thermopile Sensors 483
 14.7.3 Pyroelectric Sensors 487
 14.7.4 Bolometers 491
 14.7.5 Active Far-Infrared Sensors 494
14.8 Optical Design 497
14.9 Gas Flame Detectors 498
References 500

15 Radiation Detectors 503
15.1 Scintillating Detectors 504
15.2 Ionization Detectors
 15.2.1 Ionization Chambers
 15.2.2 Proportional Chambers
 15.2.3 Geiger-Muller Counters
 15.2.4 Semiconductor Detectors
15.3 Cloud and Bubble Chambers
References

16 Temperature Sensors
16.1 Coupling with Object
16.2 Temperature Reference Points
16.3 Thermoresistive Sensors
 16.3.1 Resistance Temperature Detectors
 16.3.2 Silicon Resistive PTC Sensors
 16.3.3 Thermistors
16.4 Thermoelectric Contact Sensors
 16.4.1 Thermoelectric Laws
 16.4.2 Thermocouple Circuits
 16.4.3 Thermocouple Assemblies
16.5 Semiconductor prt-Junction Sensors
16.6 Optical Temperature Sensors
 16.6.1 Fluoroptic Sensors
 16.6.2 Interferometric Sensors
 16.6.3 Thermochromic Solution Sensor
16.7 Acoustic Temperature Sensor
16.8 Piezoelectric Temperature Sensors
References

17 Chemical Sensors
17.1 Overview
17.2 History
17.3 Chemical Sensor Characteristics
17.4 Classes of Chemical Sensors
 17.4.1 Electrical and Electrochemical Transducers
 17.4.2 Elastomer Chemiresistors
 17.4.3 Photoionization Detector
 17.4.4 Physical Transducers
 17.4.5 Optical Transducers
17.5 Biochemical Sensors
 17.5.1 Enzyme Sensors
17.6 Multisensor Arrays
17.7 Electronic Noses and Tongues
17.8 Specific Difficulties
References