Optimization Methods in Finance

Second Edition

GÉRARD CORNUÉJOLS

Carnegie Mellon University, Pennsylvania

JAVIER PEÑA

Carnegie Mellon University, Pennsylvania

REHA TÜTÜNCÜ

SECOR Asset Management

Contents

	Pref	ace	$page ext{ xi}$
Part I	Intro	duction	1
1	Overview of Optimization Models		
	1.1	Types of Optimization Models	4
	1.2	Solution to Optimization Problems	7
	1.3	Financial Optimization Models	8
	1.4	Notes	10
2	Line	ar Programming: Theory and Algorithms	11
	2.1	Linear Programming	11
	2.2	Graphical Interpretation of a Two-Variable Example	15
,	2.3	Numerical Linear Programming Solvers	16
	2.4	Sensitivity Analysis	17
	2.5	*Duality	20
	2.6	*Optimality Conditions	23
	2.7	*Algorithms for Linear Programming	24
	2.8	Notes	30
	2.9	Exercises	31
3	Line	ar Programming Models: Asset-Liability Management	35
	3.1	Dedication	35
	3.2	Sensitivity Analysis	38
	3.3	Immunization	38
	3.4	Some Practical Details about Bonds	41
	3.5	Other Cash Flow Problems	44
	3.6	Exercises	47
	3.7	Case Study	51
4	Line	ar Programming Models: Arbitrage and Asset Pricing	53
	4.1	Arbitrage Detection in the Foreign Exchange Market	53
	4.2	The Fundamental Theorem of Asset Pricing	55
	4.3	One-Period Binomial Pricing Model	56

_					
•	n	nt	-Δ	n	ts

vi

		υ ·	
	4.4	Static Arbitrage Bounds	59
	4.5	Tax Clientele Effects in Bond Portfolio Management	63
	4.6	Notes	65
	4.7	Exercises	65
Part II	Singl	e-Period Models	69
5	Quac	Iratic Programming: Theory and Algorithms	71
	5.1	Quadratic Programming	71
	5.2	Numerical Quadratic Programming Solvers	74
	5.3	Sensitivity Analysis	75
	5.4	*Duality and Optimality Conditions	76
	5.5	*Algorithms	81
	5.6	Applications to Machine Learning	84
	5.7	Exercises	87
6	Quad	fratic Programming Models: Mean–Variance Optimization	90
	6.1	Portfolio Return	90
	6.2	Markowitz Mean–Variance (Basic Model)	91
	6.3	Analytical Solutions to Basic Mean–Variance Models	95
	6.4	More General Mean–Variance Models	99
	6.5	Portfolio Management Relative to a Benchmark	103
	6.6	Estimation of Inputs to Mean–Variance Models	106
	6.7	Performance Analysis	112
	6.8	Notes	115
	6.9	Exercises	115
	6.10	Case Studies	121
7	Sens	itivity of Mean–Variance Models to Input Estimation	124
	7.1	Black–Litterman Model	126
	7.2	Shrinkage Estimation	129
	7.3	Resampled Efficiency	131
	7.4	Robust Optimization	132
	7.5	Other Diversification Approaches	133
	7.6	Exercises	135
8	Mixed Integer Programming: Theory and Algorithms		
	8.1	Mixed Integer Programming	140
	8.2	Numerical Mixed Integer Programming Solvers	143
	8.3	Relaxations and Duality	145
	8.4	Algorithms for Solving Mixed Integer Programs	150
	8.5	Exercises	157

9	Mixe	d Integer Programming Models: Portfolios with Constraints	Combinatorial 161
	9.1	Combinatorial Auctions	161
	9.2	The Lockbox Problem	163
	9.3	Constructing an Index Fund	165
	9.4	Cardinality Constraints	167
	9.5	Minimum Position Constraints	168
	9.6	Risk-Parity Portfolios and Clustering	169
	9.7	Exercises	169
	9.8	Case Study	171
10	Stoc	hastic Programming: Theory and Algorithms	173
	10.1	Examples of Stochastic Optimization Models	173
	10.2	Two-Stage Stochastic Optimization	174
	10.3	Linear Two-Stage Stochastic Programming	175
	10.4		176
	10.5	*The L-Shaped Method	177
	10.6	Exercises	179
11	Stoc	hastic Programming Models: Risk Measures	181
	11.1	Risk Measures	181
	11.2	A Key Property of CVaR	185
	11.3	Portfolio Optimization with CVaR	186
	11.4	Notes	190
	11.5	Exercises	190
Part III	Mul	ti-Period Models	195
12	Mult	i-Period Models: Simple Examples	197
	12.1	The Kelly Criterion	197
	12.2	Dynamic Portfolio Optimization	198
	12.3	Execution Costs	201
	12.4	Exercises	209
13	Dyna	amic Programming: Theory and Algorithms	212
	13.1	Some Examples	212
	13.2	Model of a Sequential System (Deterministic Case)	214
	13.3	Bellman's Principle of Optimality	215
	13.4	Linear-Quadratic Regulator	216
	13.5	Sequential Decision Problem with Infinite Horizon	218
	13.6	Linear–Quadratic Regulator with Infinite Horizon	219
	13.7	Model of Sequential System (Stochastic Case)	221
	13.8	Notes	222
	13.9	Exercises	222

14	_	mic Programming Models: Multi-Period Portfolio Optimization	225
	14.1	Utility of Terminal Wealth	225
	14.2	Optimal Consumption and Investment	227
	14.3	Dynamic Trading with Predictable Returns and Transaction Costs	228
	14.4	Dynamic Portfolio Optimization with Taxes	230
	14.5	Exercises	234
15	Dyna	amic Programming Models: the Binomial Pricing Model	238
	15.1	Binomial Lattice Model	238
	15.2	Option Pricing	238
	15.3	Option Pricing in Continuous Time	244
	15.4	Specifying the Model Parameters	245
	15.5	Exercises	246
16	Mult	i-Stage Stochastic Programming	248
	16.1	Multi-Stage Stochastic Programming	248
	16.2	Scenario Optimization	250
	16.3	Scenario Generation	255
	16.4	Exercises	259
17	Stoc	hastic Programming Models: Asset-Liability Management	262
	17.1	Asset-Liability Management	262
	17.2	The Case of an Insurance Company	263
	17.3	Option Pricing via Stochastic Programming	265
	17.4	Synthetic Options	270
	17.5	Exercises	273
Part IV	Oth	er Optimization Techniques	275
18	Coni	c Programming: Theory and Algorithms	277
	18.1	Conic Programming	277
	18.2	Numerical Conic Programming Solvers	282
	18.3	Duality and Optimality Conditions	282
	18.4	Algorithms	284
	18.5	Notes	287
	18.6	Exercises	287
19	Robi	ust Optimization	289
	19.1	Uncertainty Sets	289
	19.2	Different Flavors of Robustness	290
	19.3	Techniques for Solving Robust Optimization Models	294
	19.4	Some Robust Optimization Models in Finance	297
	19.5	Notes	302
	19.6	Exercises	302

Contents	Co	nte	nts	
----------	----	-----	-----	--

ix

334

20	Noni	linear Programming: Theory and Algorithms	305
	20.1	Nonlinear Programming	305
	20.2	Numerical Nonlinear Programming Solvers	306
	20.3	Optimality Conditions	306
	20.4	Algorithms	308
	20.5	Estimating a Volatility Surface	318
	20.6	Exercises	319
Appendic	es		321
Appendix	Ba	sic Mathematical Facts	323
	A .1	Matrices and Vectors	323
	A.2	Convex Sets and Convex Functions	324
	A.3	Calculus of Variations: the Euler Equation	325
Reference	S		327

Index