Stability and Control of Aircraft Systems Introduction to Classical Feedback Control

Roy Langton

Contents

Se	eries	Preface	İX
Pı	Preface		xi
1	Dev	eloping the Foundation	1
	1.1	Engineering Units	2
		1.1.1 International System of Units (SI)	2
		1.1.2 US/Imperial Units System	3
		2.2.3 Comparing the SI and US/Imperial Units Systems	4
	1.2	Block Diagrams	4
		2.2.2 Examples of Summation (or Comparison) Devices	5
	1.3	Differential Equations -	11
		2.3.2 Using the 'D' Notation	12
	1.4	Spring-Mass System Example	14
		2.4.2 The Standard Form of Second-order System Transfer	
		Function	15
	1.5	Primer on Complex Numbers	18
		2.5.2 The Complex Sinusoid	19
	1.6	Chapter Summary	21
2	Closing the Loop		23
	2.1	The Generic Closed Loop System	23
		2.2.2 The Simplest Form of Closed Loop System	24
	2.2	The Concept of Stability	26

Contents	S
----------	---

	2.3	Response Testing of Control Systems	28
	2.4	The Integration Process	32
	2.5	Hydraulic Servo-actuator Example	37
	2.6	Calculating Frequency Response	40
		2.6.2 Frequency Response of a First-order Lag	43
		2.6.2 Frequency Response of a Second-order System	45
	2.7	Aircraft Flight Control System Example	47
		2.7.1 Control System Assumptions	48
		2.7.2 Open Loop Analysis	49
	• •	2.7.3 Closed Loop Performance	53
	2.8	Alternative Graphical Methods for Response Analysis	54
		2.8.2 The Nyquist Diagram	54
		2.8.2 Deriving Closed Loop Response from Nyquist	~~
		Diagrams	59
		2.8.3 The Nichols Chart	62
		2.8.4 Graphical Methods - Summary Comments and	
	20	Suggestions	66
	2.9	Chapter Summary	68
3	Cor	ntrol System Compensation Techniques	71
	3.1		71
	3.2		72
		3.2.1 Proportional Plus Integral Control	73
		3.2.2 Proportional Plus Integral Plus Derivative Control	76
		3.2.3 Lead-Lag Compensation	78
		3.2.4 Lag-Lead Compensation	81
		3.2.5 Feedback Compensation '	84
	3.3	Applications of Control Compensation	89
		3.3.2 Proportional Plus Integral Example	89
		3.3.2 Lead-Lag Compensation Example	97
		3.3.3 Class 2 System Design Example	101
	3.4	Chapter Summary	114
4	Inti	oduction to Laplace Transforms	117
-	4.1	An Overview of the Application of Laplace Transforms	117
	4.2	The Evolution of the Laplace Transform	118
		4.2.2 Proof of the General Case	111
	4.3	Applying Laplace Transforms to Linear Systems	111
	т.Ј	Analysis	124
		4.3.2 Partial Fractions	124
			14/

Contents	;
----------	---

	4.4 4.5	Laplace Transforms - Summary of Key Points Root Locus	138 140
		4.5.2 Root Locus Construction Rules	141
		4.5.2 Connecting Root Locus to Conventional Linear	
		Analysis	146
	4.6	Root Locus Example	152
	4.7	*	155
5		ling with Nonlinearities	157
	5.1	Definition of Nonlinearity Types	157
	5.2	Continuous Nonlinearities	159
		5.2.2 Engine Fuel Control System Example	161
	5.3	Discontinuous Nonlinearities	167
		5.3.2 Stability Analysis with Discontinuous Nonlinearities	172
	5.4	The Transport Delay	176
	5.5	Simulation	179
	5.6	Chapter Summary	188
6	Elec	etronic Controls	191
	6.1	Analog Electronic Controls	193
		6.2.2 The Operational Amplifier	194
		6.2.2 Building Analog Control Algorithms	195
	6.2	The Digital Computer as a Dynamic Control Element	197
		6.2.2 Signal Conversion	197
		6.2.2 Digital Controller Architectures	201
	6.3	The Stability Impact of Digital Controls	206
	6.4	Digital Control Design Example	210
	6.5	Creating Digital Control Algorithms	215
		6.5.1 The Integrator	215
		6.5.2 The First-order Lag	216
		6.5.3 The Pseudo Derivative	217
	6.6	Chapter Summary	218
7	Concluding Commentary		
	7.1	An Overview of the Material	222
	7.2	Graphical Tools	225
		Compensation Techniques	227
		7.3.1 Integral Wind-up	227
		7.3.2 Avoid Using Pure Derivative Action	228
		7.3.3 Mechanical Stiffness Estimates are Always High	228

vii

Contents	5
----------	---

235
233
232
230
229