Ein Beitrag zu Theorie und Praxis datengetriebener Modellgeneratoren zur Simulation von Produktionssystemen

von
Frank Eckardt
Scheffelstr. Sa
98693 Ilmenau
an die

Fakultät für Wirtschaftswissenschaften Technische Universität Ilmenau zur Erlangung des akademischen Grades

Doktor rerum politicarum (Dr. rer. pol.)

vorgelegte Dissertation

Referent: Univ. Prof. Dr.-Ing. habil. Peter Gmilkowsky

Korreferent: Univ. Prof. Dr.-Ing. habil. Dietrich Reschke

Tag der Einreichung: 03.07.2001

Tag der mündlichen Prüfung: Ilmenau, 01.02.2002

INHALTSVERZEICHNIS

1 Eir	leitung	1
1.1	Problemstellung	1
1.2	Zielsetzung der Arbeit	3
1.3	Gang der Untersuchung.	5
	terstützung der Planung und Steuerung von Fertigungsprozessen als elbereich von Modellgeneratoren	7
2.1	Übersicht	7
2.2	Einordnung der Arbeit in den theoretischen Diskursbereich der Fertigungssteucrun	; 7
	2.2.1 PLANUNO UND STEUERUNG VON PRODUKTIONSPROZESSEN IM BETRIEBLICHEN UMFELD	
	2.2.3 POTENTIELLER ANSATZ ZUR SCHWACHSTELLENBESEITIGUNG	
2.3	Methodische Grundlagen einer automatischen Generierung von Simulationsmodelle	n 14
	2.3.1 BEGRIFFSABGRENZUNG 2.3.2 TEILBEREICHE	
	2.3.2.1 Fertigungstechnik. 2.3.2.2 Fertigungsleittechnik	19
	2.3.2.3 Systemtheorie und Kybernetik	
	2.3.2.4 Simulation 2.3.2.5 Künstliche Intelligenz	
2.4	Zusammenfassung.	
ЗМс	odellgeneratoren - "State of the Art" und Entwicklungstendenzen	35
3.1	Übersicht	35
3.2	Lösungsansätze zur automatisierten Modellbildung	36
	32.1 ANFORDERUNGEN AN DIE LÖSUNGSANSÄTZE	
	3.2.2 KLASSIFIKATION UND BEWERTUNG DER ANSÄTZE	38
	3.2.2.1 Parametrische Ansätze	39
	3.2.2.2 Strukturbasierte Ansätze	43
	3.2.2.3 Hybrid-wissensbasierte Ansätze.	46
	3.2.2.4 Mathematisch-statistische Ansätze.	49
3.3	3 Zusammenfassung	50

4 Konzeption einer automatisierten Prozeßmodellierungs- und			
-Simulationskomponente	53		
4.1 Grundproblcmc einer automatischen Modellgenerierung	54		
4.2 Modellierung als Systemtransformation	57		
4.2.1 GRUNDLAGEN DER SYSTEMTRANSFORMATION.	57		
4.2.2 TRANSFORMATIONSAUTOMATISIERUNG DURCH INTROSPEKTIVES WISSEN	58		
4.2.3 PHASENMODELL DER SYSTEMTRANSFORMATION	61		
4.2.3.1 Bildung des Metasystems S im Phasenprozeß 1	63		
4.2.3.2 Bildung des Finalsystems S im Phasenprozeß II	64		
4.3 Objektorientierte Abstraktion von Produktionsprozessen als Grundlage einer			
automatischen Generierung von Simulationsalgorithmen	65		
4.3.1 BEGRIFFSABGRENZUNG	65		
4.3.2 GRUNDBEGRIFFE UND ZIELE DER OBJEKTORIENTIERUNG.	66		
4.3.3 ABLEITUNG EINER FORMALISIERUNGSMÖGLICHKEIT DER OBJEKTDARSTELLUNG AUF DER BASIEINER SYSTEMTHEORETISCHEN BETRACHTUNG.			
4.3.3.1 Systemtheoretisch orientierter Modellierungsansatz: DEVS	72		
4.3.3.2 Operationalisierung des systemtheoretischen Modellierungsansatzes mittels einer	7.4		
objektorientierten Formalisierung 4.3.3.3 Dynamische Integration und Aggregation von Instanzen als Grundlage einer stetiger			
Modelladaption.			
4.3.3.4 Bedienungstheoretische Interpretation der objektorientierten Formalisierung eines			
Produktionssystems			
4.3.4.1 Statisches Modell des Systems			
4.3.4.2 Dynamisches Modell des Systems.			
4.3.4.3 Funktionales Modell des Systems.	87		
4.3.5 PRODUKTIONSPROZESSE rN OBJEKTDARSTELLUNG	87		
4.3.5.1 Klasse der Realen Objekte			
4.3.5.2 Klasse der Informationellen Objekte.			
4.3.5.3 Klasse der wissensbasierten Objekte			
4.3.6.1 Begriffsdefinition.			
4.3.6.2 Konzept eines abstraktionsbasierten Granularitätsmechanismus.			
4.3.6.3 Bedeutung von unterschiedlichen Granularitäten			
4.3.6.4 jGrundprobleme der Anwendung von Abstraktionsansätzen	99		
4.3.6.5 Klassifikation von Abstraktionsansätzen	102		
4.3.6.6 Bewertung der Abstraktionsansätze			
4.3.6.7 Konzeptionelle Umsetzung von Granularitäten in der Klassenbibliothek			
4.3.7 QUELLEN UND VERFAHREN ZUR INFORMATIONSEXPLORATION DER OBJEKTE			
4.3.7.1 Klassifikation und Deskription von Explorationsquellen			
4.3.7.2 Klassifikation und Beschreibung von Explorationsverfahren	114		

4.4 Zusammenfassende Bewertung	128
5Die automatische Generierung von Simulationsmodellen: der	
Modellgenerator	129
5.1 Systemarchitektur des Modellgenerators	129
5.2 Funktionalbercich SimGen++-Sprache	130
5.2.1 ENTWICKLUNG EINER AUTOGENERIERBAREN REPRÄSENTATIONSFORM FÜR	
SIMULATIONSORIENTIERTE, STRUKTURVARIANTE REFERENZKLASSENMODELLE.	131
5.2.2 DIE MODELLIERUNGSSPRACHE SIMGEN++: EIN OBERBLICK	131
5.2.2.1 Einordnung	131
5.2.2.2 Abbildung der Klassen	
5.2.2.3 Abbildung von Wissen	
5.2.2.4 Parserkonstruktion.	
5.2.2.5 Parserimplementation	
5.3 Funktionalbereich Expertensystemkern (introspektives Wissen)	143
5.4 Funktionalbereich Objektpersistenz7.	146
5.4.1 ENTWICKLUNG DER DATENBANKMODELLE	147
5.4.1.1 Entwicklung eines relational-basierten objektorientiert repräsentierenden	
Datenbankmodells (OCP)	148
5.4.1.2 Entwicklung eines abstrakten, untypisierten Datenmodells zur Metaablage von	150
betrieblichen Daten- und Informationsbeständen (CDIP)	
5.5 Funktionalbereich Klassenbibliothek	136
5.5.1 DIE KLASSENBIBLIOTHEK MCL: ZUGRUNDELIEGENDE MODELLE UND MECHANISMEN	157
5.5.1.1 Das Inferenzmodell der MCL	
5.5.1.2 Das Ressourcenmodell der MCL.	
5.5.1.3 Das Kommunikations-und Steuerungsmodell der MCL	
5.5.1.4 Das Steuerungsmodell der MCL	
5.6 Funktionalbercich Explorationsverfahren.	164
5.6.1 SIMULATIONSRELEVANTE PPS-INFORMATIONEN: DAS ARIS-DATENREFERENZMODELL VON	
BETRIEBSWIRTSCHAFTLICHEN STANDARDLÖSUNGEN AM BEISPIEL SAP R/3	165
5.7 Funktionalbcreich Gencrator-/Analysatormodul:	169
5.7.1 DAS GENERATORMODUL	170
5.7.1.1 Implementierung der Identifikationsphase	170
5.7.1.2 Implementierung der Konzeptionsphase	171
5.7.1.3 Implementation der Transformationsphase	
5.72 DAS ANALYSATORMODUL	172
5.8 Funktionalbereich Simulationscngine.	172
5.9 Zusammenfassung und Entwicklungsbereiche	175

6	Um	setzung des Modellgenerators am Beispiel einer Modellfabrik	177
	6.1	Modellstruktur	179
	6.2	Generierung der Faktenbasis	180
		6.2.1 XML-DATENFORMAT-BESCHREIBUNG	180
		6.2.2 ERZEUGUNG VON PROLOG-TERMEN AUS XML-DATENSTRUKTUREN	185
		6.2.2.1 Skalare Datenstrukruren	186
		6.2.2.2 Hierarchische Datenstrukruren	187
		6.2.2.3 Zusammenfassung	
	6.3	Generierung des Simulationsmodells	189
		6.3.1 ENTWICKLUNOSUMGEBUNG	190
		6.3.2 XML-REFERENZMODELLE FÜR DIE FAKTEN-ERZEUGUNG.	191
		6.3.3 REFERENZREGELN FÜR DIE BASISKLASSEN	.196
		6.3.4 GENERIERTES REFERENZMODELL	198
		6.3.4.1 Klasse der realen Objekte	199
		6.3.4.2 Klasse der Betriebsmittel.	
		6.3.4.4 Klasse der technologischen Reihenfolge.	
		6.3.4.5 Klasse der Ressourcen. 6.3.4.5 Klasse der Aufträge.	
		6.3.4.6 Klasse der Steuerungsstrategien	
	6.4	Ergebnisauswertung.	
	6.5	Zusammenfassung	208
7	Zus	sammenfassende Schlußbetrachtungen	211
	7.1	Zusammenfassung der Ergebnisse	211
	7.2	Kritische Würdigung der Ergebnisse	211
	7.3	Ausblick	213
8		Anhang	xlix
	8.1	Formalisierungsmöglichkeit der Objektdarstellung: Grundlagen	xlix
	8.2	Klassifikation von Abstraktionsansätzen	liii
		8.2.1 GRENZBEREICHSMODIFIKATION	LIII
		8.2.2 VERHALTENSMODIFIKATION.	
		8.2.3 GESTALTSMODIFIKATION.	LV
	8.3	Beschreibung der Modellierungssprachc	
		Beschreibung des Datenbankmodells	
		Beschreibung der Syntaxdefinition von SimGen++	
		·	
	8.6	Beschreibung des Explorationsquellen von Abbildung 34.	exlii

Inhaltsverzeichnis

	8.6.1 EXPLORATION VON OPERATIVEN, BETRIEBSWIRTSCHAFTLICHEN STANDARDSOFTWARESYSTEM-
	DATEN CXLIII
	8.6.2 EXPLORATION VON KONSTRUKTIVEN PLANUNGSUNTERLAGEN
	8.6.3 EXPLORATION VON PROZEBZUSTANDSDATEN
	$8.64 \hspace{0.1cm} \textbf{EXPLORATION VON MITARBEITERN (INFORMATIONS- \hspace{0.1cm} \textbf{UND WISSENSEXPLORATION)}$
8.7	Die Klassenbibliothek: MCL (Manufacturing Component Library)
	Beispiclimplcmentierungeliii
8.8	XML-Datenbanken für Beispielimplementierungclxvii
	8.8.1 ARBEITSPLAN CLXVII
	8.8.2 AUFTRAG
	8.8.3 BETRIEBSMITTEL
	8.8.4 BMGRUPPEN
	8.8.5 TAETIGKEITEN CLXX
8.9	SAP R/3-Data-Dictionary-Referenzenclxxi
	8.9.1 GESAMTUNTERNEHMENSDATENMODELL BEREICH PP
	8.9.2 TABELLENÜBERSICHT BEREICH PP
8.1	0 PROLOG-Implementierung der Inferenzmaschineclxxv