An Economic Interpretation of LINEAR PROGRAMMING

Quirino Paris

Iowa State University Press / Ames

Contents

Pr	Preface		xiii
1	Linear Programming		
	1.1	What Is Linear Programming?	3
	1.2	Why Another Linear Programming Book?	5
	1.3	Problems for Linear Programming	5
	1.4	A Profit-Maximizing Problem	9
	1.5	A First Encounter with Duality	10
	1.6	Profit Maximization in LP: The Primal Problem	13
	1.7	Free Goods	14
	1.8	Cost Minimization in LP: The Dual Problem	15
	1.9	Graphical Solution of LP Problems	18
	1.10	Additional Information: The Dual of the Dual	20
	1.11	Slack (Surplus) Variables and Their Meaning	22
	1.12	A General Linear Programming Formulation	24
	1.13	Three Crucial Assumptions	25
2	Prii	nal and Dual LP Problems	27
	2.1	The Structure of Duality	27
	2.2	Dual Pairs of LP Problems with Equality Constraints	29
	2.3	Dual Problems with Equality Constraints and Free-Variables	32
3	Sett	ting Up LP Problems	35
	3.1	Preliminaries	35
	3.2	Problem 1: A Small Family Farm	36
	3.3	Problem 2: The Expanded Family Farm	42
	3.4	Problem 3: A Grape Farm	46
	3.5	Problem 4: The Expanded Grape Farm	49
	3.6	Problem 5: A Sequential Production	51
	3.7	Problem 6: A Horticultural Farm	54
	3.8	Problem 7: A Detailed Example	57

4	The	e Trans	sportation Problem	61
	4.1	Introd	uction	61
	4.2	The D	Oual of the Transportation Problem	63
	4.3	A Nu	merical Transportation Problem	64
5	Spa	ces an	d Bases	67
	5.1	Introd	luction	67
	5.2	Two V	Ways of Looking at a System of Constraints	68
	5.3	A Prii	mer on Vectors and Bases	70
		5.3.1	Addition of Two Vectors	71
		5.3.2	Subtraction of Two Vectors	71
		5.3.3	Multiplication of a Vector by a Scalar	73
		5.3.4	Extreme Points	73
		5.3.5	Basis	73
	5.4	Feasib	ble Bases and Feasible Solutions	77
	5.5	The D	Dual Definition of a Line or a Plane	81
6	Sol	ving Sy	ystems of Equations	83
	6.1	Introd	luction	83
	6.2	The C	Gaussian Elimination Method	.84
	6.3	The P	vivot Method	85
		6.3.1	The Transformation Matrix	86
		6.3.2	The Choice of a Pivot	88
		6.3.3	Another Numerical Example	89
	6.4	The I	nverse of a Basis	90
	6.5	A Ger	neral View of the Pivot Method	93
7	The	e Prim	al Simplex Algorithm	95
	7.1	Introc	luction to LP Algorithms	95
	7.2	The P	Primal Simplex Algorithm	97
		7.2.1	Ideas Underlying the Primal Simplex Method	99
		7.2.2	The Marginal Rate of Technical Transformation	106
		7.2.3		109
		7.2.4	Recapitulation	113
		7.2.5	-	115
	7.3	Dual	Variables and the Dual Interpretation	
			portunity Costs	116
	7.4	Sumn	nary of the Primal Simplex Algorithm	121

8	The	Dual Simplex Algorithm	123
	8.1	Introduction	123
	8.2	The Dual Simplex Algorithm	126
	8.3	Termination of the Dual Simplex Algorithm	129
	8.4	An Application of the Dual Simplex Algorithm	130
	8.5	Degenerate and Multiple Optimal Solutions	132
9	Line	ar Programming and the Lagrangean Function	137
	9.1	The Lagrangean Method	137
	9.2	The Complementary Slackness Conditions	140
	9.3	Complementary Slackness at Work	142
10	The	Artificial Variable Algorithm	145
	.10.1	Introduction :	145
	10.2	Ideas Underlying the Artificial Variable Algorithm	146
	10.3	Termination of the Artificial Variable Algorithm	155
	10.4	Another Application of the Artificial Variable Algorithm	155
11	The	Artificial Constraint Algorithm	159
	11.1	Ideas Underlying the Artificial Constraint Algorithm	159
	11.2	Termination of the Artificial Constraint Algorithm	163
12 The Diet Problem Revisited		165	
	12.1	The Simplex Solution of Stigler's Problem	165
	12.2	The Optimal Diet from 77 Food Categories	169
	12.3	A Multiperiod Least-Cost Diet Problem	169
13	Par	ametric Programming: Input Demand Functions	179
	13.1	Introduction	179
	13.2	Derivation of Input Demand Functions	180
	13.3	Connection with Linear Programming	182
	13.4	The Derived Demand for Input #1	185
		13.4.1 Step 1: Increase in 6i (the Rybczynski Theorem)	186
		13.4.2 Step 1: Decrease in bi	190
		13.4.3 Step 2: A Further Increase in 6i	192
		13.4.4 Step 2: A Further Decrease in &i	193
	13.5	The Derived Demand for Input #2	196
		13.5.1 Step 1: Increase and Decrease in 62	197

14	Para	metric Programming: Output Supply Functions	203
	14.1	Derivation of Output Supply Functions	203
	14.2	The Supply Function for Output #2	205
		14.2.1 The Opportunity Cost Revisited	207
		14.2.2 Increase in Price C2 (the Stolper-Samuelson Theorem)	211
		14.2.3 Further Increase of C2	215
		14.2.4 Decrease in Price C2	216
	14.3	The Supply Function for Output #3	220
		14.3.1 Increase of C3	220
		14.3.2 Decrease in C3	222
	14.4	Parametric Analysis of a Price Whose Activity Is Not in the	
		Optimal Basis	223
	14.5	Symmetry in Parametric Programming	224
15	Deal	ling with Multiple Optimal Solutions	227
		Introduction	227
		Choosing among Multiple Optimal Solutions	229
		Dual Multiple Optimal Solutions	233
		Problems with Multiple Primal and Dual Optimal Solutions	235
	15.5	Modeling to Generate Alternatives	237
16	Soli	d Waste Management	241
		A Growing Problem	241
		A LP Model of Waste Management	241
		The Dual Problem	245
		Solution of the Waste Management Problem	247
	16.5	Parametric Analysis of Solid Waste Management	250
17	The	Choice of Techniques in a Farm Production Model	255
		Introduction	255
		A Numerical Farm Production Model	258
	17.3	The Derived Demands for Land and Labor	268
18	8 Cat	tle Ranch Management	271
	18.1	A Static Model of Ranch Management	271
	18.2	A Multistage Model of Ranch Management	282
19		Measurement of Technical and Economic Efficiency	287
		The Notion of Relative Efficiency	287
		The Farrell Method	290
	19.3	Linear Programming and Efficiency Indexes	291

19.4 Technical and Economic Efficiency in a Group of Small	
Family Farms	295
19.5 Efficiency in Multiproduct Firms	300
19.6 An Example of Efficiency in Multiproduct Farms	302
19.7 Efficiency and Returns to Scale	303
20 Decentralized Economic Planning	307
20.1 When Is'Planning Necessary?	307
20.2 Decentralized Economic Planning and LP	308 _v
20.3 The Western Scheme of Economic Planning	310
20.4 The Russian Scheme of Economic Planning	318
20.5 A Comparison of Planning Schemes	323
Bibliography	
Glossary	327
Index	333