Introduction to Bayesian Scientific Computing **Ten Lectures on Subjective Computing** ## Contents | 111 7 4 | erse problems and subjective computing | 1 | |--|--|---| | 1.1 | What do we talk about when we talk about random variables? | 2 | | 1.2 | Through the formal theory, lightly | 5 | | 1.3 | How normal is it to be normal? | 16 | | Bas | ic problem of statistical inference | 21 | | 2.1 | On averaging | 22 | | 2.2 | Maximum Likelihood, as frequentists like it | 31 | | The | praise of ignorance: randomness as lack of information | 39 | | 3.1 | Construction of Likelihood | 41 | | 3.2 | Enter. Subject: Construction of Priors | 48 | | 3.3 | Posterior Densities as Solutions of Statistical Inverse Problems | 55 | | Bas | ic problem in numerical linear algebra | 61 | | 4.1 | What is a solution? | 6 | | 4.2 | Direct linear system solvers | 63 | | | | 67 | | 4.4 | • | 7 | | Sar | npling: first encounter | 91 | | 5.1 | | 92 | | 5.2 | Random draws from non-Gaussian densities | 99 | | 5.3 | Rejection sampling: prelude to Metropolis-Hastings | 102 | | Statistically inspired preconditioners | | | | 6.1 | | 108 | | 6.2 | Sample-based preconditioners and PCA model reduction | 118 | | | 1.1 1.2 1.3 Bas 2.1 2.2 The 3.1 3.2 3.3 Bas 4.1 4.2 4.3 4.4 San 5.1 5.2 5.3 Sta 6.1 | 1.1 What do we talk about when we talk about random variables? 1.2 Through the formal theory, lightly 1.3 How normal is it to be normal? Basic problem of statistical inference 2.1 On averaging 2.2 Maximum Likelihood, as frequentists like it The praise of ignorance: randomness as lack of information 3.1 Construction of Likelihood 3.2 Enter. Subject: Construction of Priors 3.3 Posterior Densities as Solutions of Statistical Inverse Problems Basic problem in numerical linear algebra 4.1 What is a solution? 4.2 Direct linear system solvers 4.3 Iterative linear system solvers 4.4 Ill-conditioning and errors in the data Sampling: first encounter 5.1 Sampling from Gaussian distributions 5.2 Random draws from non-Gaussian densities 5.3 Rejection sampling: prelude to Metropolis-Hastings Statistically inspired preconditioners 6.1 Priorconditioners: specially chosen preconditioners | ## XIV Contents | 7 | Con | ditional Gaussian densities and predictive envelopes | 127 | |-------|-------|--|-----| | | 7.1 | Gaussian conditional densities | 128 | | | 7.2 | Interpolation, splines and conditional densities | 134 | | | 7.3 | Envelopes, white swans and dark matter | 144 | | 8 | Moi | re applications of the Gaussian conditioning | 147 | | | 8.1 | Linear inverse problems | 147 | | | 5.2 | Aristotelian boundary conditions | 151 | | 9 | San | ppling: the real thing | 161 | | | 9.1 | Metropolis-Hastings algorithm | 168 | | 10 | Wra | apping up: hypermodels, dynamic priorconditioners | | | | and | Bayesian learning | 183 | | | 10.1 | MAP estimation or marginalization? | 189 | | | 10.2 | Bayesian hypermodels and priorconditioners | 193 | | Re | feren | ces | 197 | | Index | | | 199 |