SCHAUM'S OUTLINE OF

THEORY AND PROBLEMS

OF

LAGRANGIAN DYNAMICS

with a treatment of

Euler's Equations of Motion, Hamilton's Equations and Hamilton's Principle

BY

DARE A. WELLS, Ph.D.

Professor of Physics University of Cincinnati

New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

		Page
Chapter	1	BACKGROUND MATERIAL, L
	1.1	Regarding background requirements
	1.2	The basic laws of classical Newtonian dynamics and various ways of express-
	13	The choice of formulation
	1.5	Origin of the basic laws
	1.7	Regarding the basic quantities and concents employed
	1.6	Conditions under which Newton's laws are valid
	1.7	Two general types of dynamical problems
	1.8	General methods of treating dynamical problems
	1.9	A specific example illustrating Sections 1.7 and 1.8.
Chapter	2	BACKGROUND MATERIAL, IL
	2.1	Introductory remarks
	2.2	Coordinate Systems and transformation equations
	2.3	Generalized coordinates. Degrees of freedom
	2.4	Degrees of constraint, equations of constraint, superfluous coordinates
	2.5	Moving constraints
	2.6	"Reduced" transformation equations
	2.7	Velocity expressed in generalized coordinates
	2.8	Work and kinetic energy
	2.9	Examples illustrating kinetic energy
	2.10	"Center of mass" theorem for kinetic energy
	2.11	A general expression for the kinetic energy of p particles
	2.12	Acceleration defined and illustrated
	2.13	"Virtual displacements" and "Virtual work"
	2.14	Examples
Chapter	3	LAGRANGE'S EQUATIONS OF MOTION FOR A
		SINGLE PARTICLE
	3.1	Preliminary considerations
	3.2	Derivation of Lagrange's equations for a Single particle. No moving coordinates or moving constraints
	3.3	Synopsis of important details regarding Lagrange's equations
	3.4	Integrating the differential equations of motion
	3.5	Illustrative examples
	3.6	Lagrange's equations for a Single particle, assuming a moving frame of reference and/or moving constraints
	3.7	Regarding kinetic energy, generalized forces and other matters when the frame of reference and/or constraints are moving
	3.8	Illustrative examples
	3.9	Determination of acceleration by means of Lagrange's equations
	3.10	Another look at Lagrange's equations
	3.11	Suggested experiments

Chapter	$\dot{4}$	LAGRANGE'S EQUATIONS OF MOTION FOR A SYSTEM	Page
	•	OF PARTICLES.	58
	4.1	Introductory remarks	
	4.2	Derivation of Lagrange's equations for a system of particles.	58
	4.3	Expressing T in proper form	
	4.4	Physical meaning of generalized forces.	
	4.5	Finding expressions for generalized forces.	61
	4.6	Examples illustrating the application of Lagrange's equations to Systems involving several particles.	5 62
	4.7	Forces on and motion of charged particles in an electromagnetic field.	
	4.8	Regarding the physical meaning of Lagrange's equations.	69
	4.9	Suggested experiment	71

Chapter	5	CONSERVATIVE SYSTEMS	.81
	5.1	Certain basic principles illustrated	81
	5.2	Important definitions.	82
	5.3	General expression for V and a test for conservative forces.	.82
	5.4	Determination of expressions for V.	83
	5.5	Simple examples	83
	5.6	Generalized forces as derivatives of V	.85
	5.7	Lagrange's equations for conservative Systems	.85
	5.8	Partly conservative and partly non-conservative Systems.	.86
	5.9	Examples illustrating the application of Lagrange's equations to conservative	
		Systems	86
	5.10	Approximate expression for the potential energy of a system of Springs	.89
	5.11	Systems in which potential energy varies with time. Examples	.90
	5.12	Vector potential function for a Charge moving in an electromagnetic field	91
	5.13	The "energy integral"	91
	5.14	Suggested experiments	.92

Chapter	6	DETERMINATION OF F_{Qf} FOR DISSIPATIVE FORCES	<u>.99</u>
	6.1	Definition and classification.	99
	6.2	General procedure for determination of F,	99
	6.3	Examples: Generalized frictional forces.	.100
	6.4	Examples: Generalized viscous forces.	.102
	6.5	Example: Forces proportional to nth power of speed, $n > 1$.103
	6.6	Forces expressed by a power series	.103
	6.7	Certain interesting consequences of friction and other forces.	.103
	6.8	A "power function", P, for the determination of generalized forces.	.104
	6.9	Special forms for the power function	.105
	6.10	Examples illustrating the use of <i>P</i>	.106
	6.11	Forces which depend on relative velocity	.107
	6.12	Forces not opposite in direction to the motion	107
	6.13	Suggested experiment	.110

Chapter	^m 7	GENERAL TREATMENT OF MOMENTS AND PRODUCTS OF INERTIA.	Page 117
	7.1	General expression for the moment of inertia of a rigid body about any axis	117
	72	The ellipsoid of inertia	118
	73	Principal moments of inertia Principal axes and their directions	110
	7.4	Given moments and products of inertia relative to any rectangular axes with origin at the center of mass. To find corresponding quantities referred to any parallel system of axes.	120
	7.5	Given moments and products of inertia relative to any frame. To find corresponding quantities relative to any other parallel frame.	. 121
	7.6	To find moments and products of inertia relative to rotated frames.	122
	7.7	Examples of moments, products and ellipsoids of inertia.	124
	7.8	"Foci" and "spherical" points of inertia	129
	7.9	Physical significance of products of inertia	130
	7.10	Dynamically equivalent bodies.	. 131
	7.11	Experimental determination of moments and products of inertia	132
	7.12	Suggested project on the ellipsoid of inertia	133
	7 13	Suggested experiment	134
	7.15	Suggesteu experiment	. 134
Chapter	8	LAGRANGIAN TREATMENT OF RIGID BODY	
•		DYNAMICS	. 139
	81	Proliminary romarks	130
	87	Nacassary background material	130
	0.2	Concept arrangement for the kinetic energy of a free visid hedr	1/0
	0.J 0 1	General expression for the kinetic energy of a free right body.	140 1 <i>1</i> 0
	0.4 0.7	Summary of important considerations regarding 1	140
	8.5	Setting up equations of motion.	149
	8.6	Examples illustrating kinetic energy and equations of motion.	149
	8.7	Euler angles defined. Expressing a and its components in these angles	.156
	8.8	Use of Euler angles: Body moving in any manner.	15/
	8.9	Kinetic energy making use of direction-fixed axes.	161
	8.10	Motion of a rigid body relative to a translating and rotating frame of reference.	. 162
	8.11	Suggested experiment	167
Chapter	9	THE EULER METHOD OF RIGID BODY DYNAMICS	.176
	9.1	Preliminary remarks	176
	9.2	Translational equations of motion of the center of mass	.176
	9.3	Various ways of expressing the scalar equations corresponding to $MA = F$	177
	9.4	Background material for a determination of Euler's rotational equations.	.178
	9.5	Euler's three rotational equations of motion for a rigid body. General form	181
	9.6	Important points regarding Euler's rotational equations	182
	9.7	Vector form of Euler's rotational equations	183
	9.8	Specific examples illustrating the use of the translational equations of motion of the center of mass and Euler's rotational equations	19/
	0.0	Fromples illustrating component form about any line	104
	9.9 0.10	Examples must all g component form about any fine	100
	9.1U 0.11	Equations of motion relative to a moving frame of reference.	191
	9.11	ringing the motions of a space ship and object inside, each acted upon by	101
	0.15	Known forces	102
	9.12 0.12	Non-noionomic constraints	. 193
	9.15	Euler's rotational equations from the point of view of angular momentum	195
	9.14	Comparison of the Euler and Lagrangian treatments	.197

Chapter	10	SMALL OSCILLATIONS ABOUT POSITIONS OF	
		EQUILIBRIUM	203
	10.1	The type of problem considered.	203
	10.2	Restrictions on the general problem.	203
	10.3	Additional background material	206
	10.4	The differential equations of motion	209
	10.5	Solutions of the equations of motion; conservative forces only	209
	10.6	Summary of important facts regarding oscillatory motion.	211
	10.7	Examples	211
	10.8	Special cases of the roots of D	215
	10.9	Normal coordinates	. 217
	10.10	Proof of the orthogonality relation.	21»
	10.11	Important points regarding normal coordinates.	220
	10.12	Advantages of normal coordinates.	220
	10.13	Finding expressions for normal coordinates.	221
	10.14	Amplitude and direction of motion of any one particle when a particular mode	
		of oscillation is excited	. 222
	10.15	Determination of arbitrary constants with the help of orthogonality conditions	224
	10.16	Small oscillations with viscous and conservative forces acting.	.224
	10.17	Regarding stability of motion	226
	10.18	Use of normal coordinates when external forces are acting.	
	10.19	Use of normal coordinates when viscous and external forces are acting.	.227
	10.20	Suggested experiments.	228
Chapter	11	SMALL OSCILLATIONS ABOUT STEADY MOTION	.234
•	11 1	Important preliminary considerations	234
	11.1	Fliminating ignorable coordinates from the general equations of motion	236
	11.2	Elimination of ignorable coordinates employing the Routhian function	236
	11.3	Conditions required for steady motion	237
	11.5	Equations of motion assuming steady motion slightly disturbed	237
	11.6	Solving the equations of motion	238
	11.7	Ignorable coordinates as functions of time after the disturbance	239
	11.8	Examples	.239
	11.9	Oscillation about steady motion when the system contains moving constraints	246
	11.10	When the system is acted upon by dissipative forces	.248
	11.11	Stability of steady motion.	. 248
	10	EAD OES OF CONSTRAINT	256
Unapter	12	rukulo uf uundikaini	.250
	12.1	Preliminary considerations	256
	12.2	General procedure for finding forces of constraint.	.258
	12.3	Illustrative examples	259
	12.4	Forces of constraint using Euler's equations.	263
	12.5	Forces of constraint and equations of motion when constraints are rough	264
Chapter	13	DRIVING FORCES REQUIRED TO ESTABLISH	
	-	KNOWNMOTIONS	268
	13.1	Preliminary considerations	260
	13.1	Ceneral method	. 200 260
	12.2	Illustrativa avamlas	207 270
	13.5	Fauilibrium of a system	272
	13.5	Examples illustrating problems in static equilibrium t •	273
	20.00		

Chapter	⁴ 14	EFFECTS OF EARTH'S FIGURE AND DAILY	Page
omput		ROTATION ON DYNAMICAL PROBLEMS.	281
	14 1	Introductory remarks	281
	14.2	Regarding the earth's figure Geocentric and geographic latitude and radius	282
	14.3	Acceleration of gravity on or near the earth's surface	282
	14.5	Computational formulas and certain constants	283
	14.5	Ref erences on the figure of the earth and its gravitational field	285
	14.6	Kinetic energy and equations of motion of a particle in various coordinates. Frame of reference attached to earth's surface	. 286
	14.7	T for a particle, frame of reference in motion relative to earth's surface	290
	14.8	Motion of a rigid body near the surface of the earth.	. 290
	14.9	Specific illustrative examples.	. 291
Chapter	15	APPLICATION OF LAGRANGE'S EQUATIONS TO	
		ELECTRICAL AND ELECTROMECHANICAL SYSTEMS	.302
	15.1	Preliminary remarks	302
	15.1	Expressions for $TVPF_{e}$ and Lagrange's equations for electrical circuits	302
	15.2	Illustrative examples	304
	15.4	Electromechanical Systems: The appropriate Lagrangian; determination of	
		generalized forces.	306
	15.5	Oscillations of electrical and electromechanical Systems.	307
	15.6	Forces and voltages required to produce given motions and currents in an	200
	157	Analogous electrical and machanical Systems	200
	15.7 15.8	Ref erences	311
Chapter	16	HAMILTON'S EQUATIONS OF MOTION	.316
	16.1	General remarks	. 316
	16.2	A word about "generalized momentum"	316
	16.3	Derivation of Hamilton's equations	316
	16.4	Procedure for setting up H and writing Hamiltonian equations	.318
	16.5	Special cases of H.	318
	16.6	Important energy and power relations	. 318
	16.7	Examples. The Hamiltonian and Hamiltonian equations of motion.	.319
	16.8	Examples of H for system in which there are moving coordinates and/or	001
	140	moving constraints.	321
	16.9	Fields in which the Hamiltonian method is employed.	322
Chapter	17	HAMILTON'S PRINCIPLE	.326
	17.1	Preliminary Statement	326
	17.2	Introductory problems	326
	17.3	Certain techniques in the calculus of variations	. 327
	17.4	Solutions to previously proposed examples.	.330
	17.5	Hamilton's principle from the calculus of variations.	. 331
	17.6	Hamilton's principle from D'Alembert's equation	. 331
	17.7	Lagrange's equations from Hamilton's principle.	. 333
	17.8	Examples.	334
	17.9	Applications of Hamilton's principle	. 336
Chapter	18	BASIC EQUATIONS OF DYNAMICS IN VECTOR AND	
		TENSOR NOTATION	.339
Append	ix	RELATIONS BETWEEN DIRECTION COSINES	.343
		INDEX.	.351