Digitale Signalverarbeitung stopped person legislation der Meß- und Regelungstechnik

Von Dr.-Ing. Dr. h. c. Werner Leonhard o. Professor an der Technischen Universität Braunschweig

Mit 207 Bildern

Vorarlberg

Höchsterstraße 73 6850 Dornbirn

Tel.: 0 55 72/20 3 **36 Fax: 0** 55 72/20 3 **36-83**

IIIBibliothek

B. G.Teubner Stuttgart 1989

Inhalts Verzeichnis

Vorwort			3
Ei	Einleitung •		
1		ntinuierliche und zeitdiskrete Variable	14
	1.1	Zinsrechnung.	
	1.2	Mischvorgang Onticohe Abtectung mit sinem Stachesken	18
	1.5	Optische Abtastung mit einem Stroboskop Verzögerungsglied 1. Ordnung mit stufenförmig veränderlicher	.10
	1.4		19
	1.5	Anregung	.19
	1.0	Anregung	23
	1.6	Zeitdiskrete Beschreibung der Ausgleichsvorgänge eines konti-	23
	1.0	nuierlichen Übertragungssystems.	.24
	1.7	Lösung einer linearen homogenen Differenzengleichung durch	.2-
	1.,	einen Potenzreihen-Ansatz	26
	1.8	Differenzengleichung in Zustands-Normalform	27
	1.9	Andere Schreibweise einer linearen Differenzengleichung n. Ord-	
		nung	.28
2	Sta	bilität und Dämpfung	30
_	2.1	z-Ebene und Tp-Ebene	
	2.2	Die Abbildung $w=(z-1)/(z+1)$.	
	2.3	Beispiele für Stabilitätsgrenzen	
	2.4	Graphische Stabilitätsprüfung anhand des Polynoms $N(z)$	39
		2.4.1 Grenzkurven für vorgegebene absolute oder relative	
		Mindestdämpfung	39
		2.4.2 Ortskurvenkriterium	
3	Laı	olace-Transformation diskontinuierlicher Funktionen	44
	3.1	Stufenfunktion.	44
	3.2	Impulsspeicher (Halteglied, Mittelwertbildner)	
	3.3	Modulierte Impulsreihe.	
	3.4	Lineare Übertragung einer modulierten Impulsreihe.	

Die	Impuls-Übertragungsfunktion 54	
4.1	Rationale Übertragungsfunktion $F(p)$ mit Einzelpolen	
4.2	Rationale Übertragungsfunktion $F(p)$ mit Einzel- und Doppel-	
	polen	
4.3	Übertragungsstrecke mit Laufzeit. 58	
4.4	Zusammenhang zwischen $F(p)$ und $F^*(j>)$.	
	4.4.1 Pole und Nullstellen 60	
	4.4.2 Impulsmodulation und Abtasttheorem 62	
4.5	Beispiele für Impuls-Übertragungsfunktionen 68	
	4.5.1 Verzögerungsglied 1. Ordnung 68	
	4.5.2 Verzögerungsglied 2. Ordnung mit komplexen Polen 68	
Zus	sammengesetzte Übertragungsstrecken 70	
5.1	Kettenschaltung mehrerer Teilstrecken	
	5.1.1 Ohne Zwischenabtastung 70	
	5.1.2 Mit Zwischenabtastung	
5.2	Andere Kombinationen von Teilübertragungsstrecken. 72	
	5.2.1 Parallelschaltung mehrerer Teilstrecken 72	
	5.2.2 Überlagerung von modulierten Impulsreihen und konti-	
	nuierlichen Zeitfunktionen. 74	
5.3	Berechnung von Zwischenwerten 74	
5.4	Übertragung von amplitudenmodulierten Impulsen endlicher	
	Höhe und Breite	
5.5	Übertragung von Stufenfunktionen	
5.6	Lineare Interpolation	
Ber	echnung zeitdiskreter Einschwingvorgänge mit Hilfe der	
«-T	ransformation 85	
6.1	Rechenoperationen	
	6.1.1 Addition und Verstärkung	
	6.1.2 Verzögerung um ein ganzzahliges Vielfaches eines	
	Abtastintervalles T	
	6.1.3 Differenzbildung 86	
	6.1.4 Summation	
	6.1.5 Dämpfung	
	6.1.6 Faltung	
6.2	Häufig vorkommende Funktionen	
	6.2.1 Exponential funktion	
	6.2.2 Lineare Rampenfunktion 90	
	6.2.3 Parabolische Anstiegsfunktion 91	
	6.2.4 Verzögerungsfunktion. 92	
	6.2.5 Gedämpfte Schwingung. 92	

6.3	Berechnung von Einschwingvorgängen 93	
	6.3.1 Zeit- und Frequenzbereich 93	3
	6.3.2 Beispiele	5
Kor	ntinuierlich wirkendes System mit Rückkopplung und	
	em Abtaster 98	R
7.1	Aufbau eines einfachen Abtast-Regelkreises 98	
7.2	Berechnung der Impuls-Übertragungsfunktion des geschlosse-	,
7.2	nen Kreises)
7.3	Abtastregelkreis 2. Ordnung mit einem Integralregler)
	7.3.1 Wirkungsweise und Anwendungsbeispiel 100)
	7.3.2 Impuls-Übertragungsfunktion des geschlossenen Regel-	
	kreises	1
	7.3.3 Stabilität	4
	7.3.4 Wahl des Reglers für vorgegebene Mindestdämpfung 105	5
7.4	Abtastregelkreis mit Impulsspeicher	
	7.4.1 Impuls-Übertragungsfunktion 10°	
	7.4.2 Stabilität und Dämpfung. 108	3
7.5	Vertauschung der Reihenfolge von Übertragungsgliedern im	
	Regelkreis 11	1
Anv	wendung der Abtastregelung bei einer Regelstrecke	
	Laufzeit 113	3
8.1	Näherung für eine Tiefpaß-Regelstrecke höherer Ordnung 113	3
8.2	Impuls-Übertragungsfunktion eines Regelkreises mit Laufzeit . 11:	5
8.3	Stabilität und Dämpfung 110	5
8.4	Beispiel)
Dia	ritale Meßwert Verarbeitung 122	,
9.1	Blockschema eines diskreten linearen Filters in Normalform 12-	
9.2	Diskretes lineares Filter in einer zweiten Normalform 13	
9.3	Beispiele für diskrete lineare Filter	
,	9.3.1 Idealer PID-Abtastregler 13-4	
	9.3.2 Diskrete Glättungsfilter	
	9.3.3 Diskretes Differenzierfilter •	
	9.3.4 Zweifaches Differenzierfilter	
	9.3.5 Prädiktionsfilter	
9.4	Angepaßtes Filter zur Laufzeitmessung	
9.5	Auswirkungen von Rundungsfehlern infolge begrenzter Ampli-	
	tudenauflösung der Wandler und des Rechners 158	8

10 Quasistetige lineare Abtastregelung mit digitalem Regler	162
10.1 Blockschaltbild und Übertragungsfunktion	162
10.2 Entwurf eines quasistetigen Abtastreglers im Frequenzbereich .	165
11 Rechnergestützter Entwurf linearer	
	176
	176
11.2 Entkoppelte Vorgabe des Stör- und Führungsverhaltens	183
gungsfunktion durch Regression	.187
11.4 Kompensierender Regler für nullstellenfreie Strecken-Übertra-	102
	192
11.5 Störmodell zur Dämpfung von Strecken-Eigenschwingungen11.6 Zeitdiskretes Streckenmodell für eine ganzzahlig vielfache Ab-	196
	201
12 Synthese eines Abtastregelkreises mit Einschwingvorgang	
•	204
ϵ	205
12.2 Synthese der Reglerfunktion für Einschwingvorgang endlicher Dauer bei Führungsanregung	207
12.3 Beispiel für endliche Dauer des Einschwingvorganges bei	207
	212
12.4 Synthese des Reglers für Einschwingvorgänge endlicher Dauer	
bei Stör- und Führungsanregung.	216
13 Zeitreihenregler mit nicht-algebraischem	
	222
13.1 Darstellung einer diskreten linearen Übertragungsstrecke durch	
	.222
<u> </u>	229
	231
13.3.1 Verwendung einer Zeitreihe als nichtparametrisches dy-	
	231
	233
ϵ	235
	237
13.4 Ergebnisse einer Reglerberechnung mit Zeitreihen	239
14 Entwurf eines prädiktiven Abtastreglers im Zeitbereich	245

15 Entwurf eines selbsteinstellenden Reglers mit einem		
Parameter-Suchverfahren	254	
15.1 Simulation des geschlossenen Kreises, Ansatz einer Zielfunktion	255	
15.2 Minimisierung der Zielfunktion mit einem Suchverfahren	257	
15.3 Selbsteinstellende Regelung für ein Zwei-Massen-Antriebssystem	ı 261	
15.4 Gesteuerte Adaptation bei einer nichtlinearen Strecke.	.272	
16 Nichtlineare Abtastsysteme	280	
16.1 Pulsweiten-Modulation als Beispiel einer zeitdiskreten nichtli-		
nearen Signalverarbeitung.	280	
16.2 Linearisierung am Arbeitspunkt, analoge Regelung	287	
16.3 Verallgemeinerung	292	
16.3.1 Regelstrecke 2. Ordnung		
16.3.2 Netzgeführte Stromrichter.		
16.4 Digitale Stromregelung mit schaltendem Stellglied	296	
Literaturverzeichnis 302		
Sachverzeichnis	307	