Performance Analysis of Row Lines with Non-Linear Row of Material

Table of Contents

1.	Intr	oduct	ion	1		
2.	Issues, Goals, and Methods of Flow Line Analysis					
	2.1	Varia	bility and the Performance of Flow Lines	3		
	2.2	Non-I	Linearities in the Flow of Material	6		
		2.2.1	Assembly and Disassembly Operations .	6		
		2.2.2	· · · · · · · · · · · · · · · · · · ·			
	2.3	Econo	omic Design Problems in Flow Line Analysis.			
		2.3.1	Cash-Flow Oriented Machine Selection and Buffer Al-			
			location	. 11		
		2.3.2	Cash-Flow Oriented Buffer Allocation for a Given Set			
			of Machines.	. 20		
	2.4	Metho	ods of Performance Analysis	. 22		
	2.5	Two-l	Machine Decomposition of Flow Lines	25		
	2.6	Revie	w of the Literature	27		
3.	Assembly/Disassembly Systems with Random Processing					
	Times					
	3.1		ete and Continuous Time Models.			
	3.2		Solution of a Two-Machine Subsystem.			
		3.2.1	Performance Measures.			
		3.2.2	Derivation of the Transition Equations			
		3.2.3	Identities			
		3.2.4		. 47		
		3.2.5	The Algorithm to Determine Steady-State Probabili-			
			ties and Performance Measures.	53		
		3.2.6	Determination of Performance Measures without Ex-			
			plicit Computation of all Steady-State Probabilities			
		3.2.7	Numerical Results for the Two-Machine Systems			
	3.3		mposition Equations for Assembly/Disassembly Systems			
		3.3.1	Conservation of Flow Equation			
		3.3.2	Flow Rate-Idle Time Equations.			
		3.3.3	Resumption of Flow Equations.			
		3.3.4	Interruption of Flow Equations	66		

VIII Table of Contents

		3.3.5	1 1	
		3.3.6		
			tions for the Continuous Time Case.	
	3.4		Algorithms to Determine Performance Measures	
	3.5		rical Results	
			Behavior of the Algorithm	
		3.5.2		
	3.6	Optin	nal Design of Assembly/Disassembly Systems	86
4.			es with Rework Loops and Identical Processing	
			ete-Material Flow Line Model with Identical Determin-	89
	4.1			90
	4.2		Processing Times	.09
	4.2		s	0.1
		4.2.1		
		4.2.1		
		4.2.3	<u>*</u>	
		4.2.3		
		4.2.5	1 0 1	
		4.2.6	Simultaneous Solution of the Decomposition Equations	
	4.3		Algorithm to Determine Performance Measures.	
	4.5	4.3.1	Purpose, Background, and Basic Structure of the Al-	.100
			gorithm	.106
		4.3.2	•	
		4.3.3	•	
		4.3.4		
		4.3.5	General Comments on Implementation and Algorithm	
			Behavior	114
	4.4	Nume	erical Results: Algorithm and Flow Line Behavior	
		4.4.1	Introduction into the Numerical Study	
		4.4.2	· · · · · · · · · · · · · · · · · · ·	
		4.4.3	Pure Merge Networks	126
		4.4.4	Structures with Loops	134
		4.4.5	Summary of the Numerical Results	
	4.5	Optin	nal Design of Systems with Loops and Identical Process-	
		ing Ti	imes	.159
		4.5.1	Impact of the Acceptance Probability at the Quality	
			Inspection Station	.160
		4.5.2	Impact of the Placement of the Inspection Station	163
5.	Flo	w Lin	es with Rework Loops and Machine-Specific Pro	-
	cess			.165
	5.1		inuous-Material Flow Line Model with Machine-Specific	
		Proce	ssing Times	165

	5.2	Decomposition Equations for Loops and Different Processing	167			
		Times. 5.2.1 Conservation of Flow Equation				
		5.2.2 Flow Rate-Idle Time Equations				
		5.2.3 Resumption of Flow Equations I: Split Operations				
		5.2.4 Resumption of Flow Equations II: Merge Operations	173			
		5.2.5 Interruption of Flow Equations II: Merge Operations	176			
		5.2.6 Interruption of Flow Equations II: Merge Operations	177			
		5.2.7 Simultaneous Solution of the Decomposition Equations	180			
	5.3	The Algorithm to Determine Performance Measures	181			
	5.4	Numerical Results: Algorithm and Flow Line Behavior	183			
	5.5	Optimal Design of Systems with Loops and Different Process-	.100			
	0.0	ing Times.	.190			
6.	Cor	nclusions and Suggestions for Further Research	195			
A.	Der	ivation for the Discrete Material Flow Line	199			
		Resumption of Flow Equations: Split System				
		A.1.1 Upstream Machine.	.199			
		A.1.2 Downstream Machine	211			
	A.2	Resumption of Flow Equations: Merge System	213			
		A.2.1 Upstream Machine				
		A.2.2 Downstream Machine in the Priority Two Line.	215			
B.		ivation for the Continuous Material Flow Line				
	B.I	Resumption of Flow Equations: Split System				
		B.I.I Upstream Machine.				
		B.I.2 Downstream Machine.				
	B.2	Resumption of Flow Equations: Merge System				
		B.2.1 Upstream Machine				
	D 4	B.2.2 Downstream Machine in the Priority Two Line.	231			
	B.3	Interruption of Flow Equations: Upstream Machine of a Split	245			
	D 4	System				
	B.4	Interruption of Flow Equations: Merge System	254			
		B.4.1 Upstream Machine				
		B.4.2 Downstream Machine of the Priority Two Line				
Glo	ossar	y of Notation	273			
Bib	Bibliography					