

Statistics for Experimenters

Design, Innovation, and Discovery

Second Edition

GEORGE E. P. BOX
J. STUART HUNTER
WILLIAM G. HUNTER

Contents

Preface to the Second Edition	
Chapter 1 Catalyzing the Generation of Knowledge	1
1.1. The Learning Process	1
1.2. Important Considerations	5
1.3. The Experimenter's Problem and Statistical	
Methods	6
1.4. A Typical Investigation	9
1.5. How to Use Statistical Techniques	13
References and Further Reading	14
Chapter 2 Basics (Probability, Parameters, and Statistics)	17
2.1. Experimental Error	17
2.2. Distributions	18
2.3. Statistics and Parameters	23
2.4. Measures of Location and Spread	24
2.5. The Normal Distribution	27
2.6. Normal Probability Plots	33
2.7. Randomness and Random Variables	34
2.8. Covariance and Correlation as Measures of	
Linear Dependence	37
2.9. Student's t Distribution	39
2.10. Estimates of Parameters	43
2.11. Random Sampling from a Normal Population	44
2.12. The Chi-Square and F Distributions	46
2.13. The Binomial Distribution	48
2.14. The Poisson Distribution	54
	iv

X CONTENTS

Appendix 2A. Mean and Variance of Linear	
Combinations of Observations	57
References and Further Reading	60
Chapter 3 Comparing Two Entities: Reference Distributions,	
Tests, and Confidence Intervals	67
3.1. Relevant Reference Sets and Distributions	67
3.2. Randomized Paired Comparison Design: Boys'	
Shoes Example	81
3.3. Blocking and Randomization	92
3.4. Reprise: Comparison, Replication,	
Randomization, and Blocking in Simple	
Experiments	94
3.5. More on Significance Tests	94
3.6. Inferences About Data that are Discrete:	
Binomial Distribution	105
3.7. Inferences about Frequencies (Counts Per Unit):	
The Poisson Distribution	110
3.8. Contingency Tables and Tests of Association	112
Appendix 3A. Comparison of the Robustness of	
Tests to Compare Two Entities	117
Appendix 3B. Calculation of reference	120
distribution from past data	120
References and Further Reading	123
Chapter 4 Comparing a Number of Entities, Randomized	
Blocks, and Latin Squares	133
4.1. Comparing k Treatments in a Fully	
Randomized Design	133
4.2. Randomized Block Designs	145
4.3. A Preliminary Note on Split-Plot Experiments	
and their Relationship to Randomized Blocks	156
4.4. More than one blocking component: Latin	
Squares	157
4.5. Balanced Incomplete Block Designs	162
Appendix 4A. The Rationale for the Graphical	
ANOVA	166
Appendix 4B. Some Useful Latin Square,	
Graeco-Latin Square, and Hyper-Graeco-Latin	
Square Designs	167
References and Further Reading	168
Chapter 5 Factorial Designs at Two Levels	173
5.1. Introduction	173

CONTENTS

5.2.	Example 1: The Effects of Three Factors	
	(Variables) on Clarity of Film	174
5.3.	Example 2: The Effects of Three Factors on	
	Three Physical Properties of a Polymer Solution	175
5.4.	A 2 ³ Factorial Design: Pilot Plant Investigation	177
	Calculation of Main Effects	178
5.6.	Interaction Effects	181
5.7.	Genuine Replicate Runs	183
5.8.	Interpretation of Results	185
	The Table of Contrasts	186
5.10.	Misuse of the ANOVA for 2^k Factorial	
	Experiments	188
	Eyeing the Data	190
5.12.	Dealing with More Than One Response: A Pet	
	Food Experiment	193
5.13.	A 2 ⁴ Factorial Design: Process Development	
	Study	199
	Analysis Using Normal and Lenth Plots	203
	Other Models for Factorial Data	208
	Blocking the 2 ^k Factorial Designs	211
	Learning by Doing	215
5.18.	Summary	219
	Appendix 5A. Blocking Larger Factorial Designs	219
	Appendix 5B. Partial Confounding	221
	References and Further Reading	222
Chapter 6 Frac	tional Factorial Designs	235
6.1.	Effects of Five Factors on Six Properties of Films	
	in Eight Runs	235
6.2.	Stability of New Product, Four Factors in Eight	
	Runs, a 2 ⁴⁻¹ Design	236
6.3.	A Half-Fraction Example: The Modification of a	
	Bearing	239
6.4.	The Anatomy of the Half Fraction	240
6.5.	The 2 _{III} ⁷⁻⁴ Design: A Bicycle Example	244
	Eight-Run Designs	246
6.7.	Using Table 6.6: An Illustration	247
6.8.	Sign Switching, Foldover, and Sequential	
	Assembly	249
6.9.	An Investigation Using Multiple-Column	
	Foldover	252
6.10.	Increasing Design Resolution from III to IV by	
	Foldover	257
6.1 1.	Sixteen-Run Designs	258

XII CONTENTS

6.12	. The Nodal Half Replicate of the 2 ³ Factorial:	
	Reactor Example	259
6.13	. The 28-4 Nodal Sixteenth Fraction of a 28	
	Factorial	263
6.14	. The 2 ¹⁵⁻¹¹ Nodal Design: The Sixty-Fourth	
	Fraction of the 2 ¹⁵ Factorial	266
6.15	. Constructing Other Two-Level Fractions	269
	. Elimination of Block Effects	271
	References and Further Reading	273
Chapter 7 Add	litional Fractionals and Analysis	281
7.1	. Plackett and Burman Designs	281
	. Choosing Follow-Up Runs	294
7.3	. Justifications for the Use of Fractionals	303
	Appendix 7A. Technical Details	305
	Appendix 7B. An Approximate Partial Analysis	
	for PB Designs	308
	Appendix 7C. Hall's Orthogonal Designs	310
	References and Further Reading	313
Chapter 8 Fac	torial Designs and Data Transformation	317
8.1	. A Two-Way (Factorial) Design	317
8.2	. Simplification and Increased Sensitivity from	
	Transformation	320
	Appendix 8A. Rationale for Data Transformation	329
	Appendix 8B. Bartlett's χ^2_{ν} for Testing	
	Inhomogeneity of Variance	329
	References and Further Reading	329
Chapter 9 Mu	ltiple Sources of Variation	335
9.1	. Split-Plot Designs, Variance Components, and	
	Error Transmission	335
9.2	2. Split-Plot Designs	335
	3. Estimating Variance Components	345
	. Transmission of Error	353
	References and Further Reading	359
Chapter 10 Lea	st Squares and Why We Need Designed	
	periments	363
10.1	. Estimation With Least Squares	364
	2. The Versatility of Least Squares	378
	3. The Origins of Experimental Design	397

CONTENTS	xii
CONTENTS	xii

	10.4.	Nonlinear Models Appendix 10A. Vector Representation of	407
		Statistical Concepts	410
		Appendix 10B. Matrix Version of Least Squares	416
		Appendix 10C. Analysis of Factorials, Botched	110
		and Otherwise	418
		Appendix 10D. Unweighted and Weighted Least	7,0
		Squares	420
		References and Further Reading	424
		Treatment and I didne moderning	12.
Chapter 11	Mode	eling, Geometry, and Experimental Design	437
	11.1.	Some Empirical Models	441
		Some Experimental Designs and the Design	
		Information Function	447
	11.3.	Is the Surface Sufficiently Well Estimated?	453
		Sequential Design Strategy	454
		Canonical Analysis	461
		Box-Behnken Designs	475
		References and Further Reading	483
Chapter 12	Some	e Applications of Response Surface Methods	489
	12.1.	Iterative Experimentation To Improve	
		a Product Design	489
	12.2.	Simplification of a Response Function by Data	
		Transformation	503
	12.3.	Detecting and Exploiting Active and Inactive	
		Factor Spaces for Multiple-Response Data	509
	12.4.	Exploring Canonical Factor Spaces	513
		From Empiricism to Mechanism	518
		Uses of RSM	526
		Appendix 12A. Average Variance of \hat{y}	526
		Appendix 12B.	528
		References and Further Reading	530
Chapter 13	Desig	gning Robust Products	
	and	Processes: An Introduction	539
	13.1.	Environmental Robustness	539
		Robustness To Component Variation	549
		Appendix 13A. A Mathematical Formulation for	
		Environmental Robustness	556
		Appendix 13B. Choice of Criteria	558
		References and Further Reading	559
		time 😅	

xiv CONTENTS

-	Process Control, Forecasting, and Time Series: An Introduction	565
	14.1. Process Monitoring	565
	14.2. The Exponentially Weighted Moving Average	569
	14.3. The CuSum Chart	574
	14.4. Process Adjustment	576
	14.5. A Brief Look At Some Time Series Models	
	and Applications	585
	14.6. Using a Model to Make a Forecast	588
	14.7. Intervention Analysis: A Los Angeles Air	
	Pollution Example	593
	References and Further Reading	595
Chapter 15	Evolutionary Process Operation	599
	15.1. More than One Factor	602
	15.2. Multiple Responses	606
	15.3. The Evolutionary Process Operation Committee	607
	References and Further Reading	608
Appendix T	ables	611
Author Ind	ex	621
Subject Ind	ex	623