Mathematics for Economics

third edition

Michael Hoy John Livernois Chris McKenna Ray Rees Thanasis Stengos

The MIT Press
Cambridge, Massachusetts
London, England

Contents

Preface' xiii

Part I Introduction and Fundamentals

Chapter 1 Introduction 3 1.1 What Is an Economic Model? 3 1.2 How to Use This Book 8 1.3 Conclusion 9				
Chapter 2				
Review of Fundamentals 11				
2.1 Sets and Subsets 11				
2.2 Numbers 23				
2.3 Some Properties of Point Sets in W 31				
2.4 Functions 41				
Chapter 3				
Sequences, Series, and Limits 61				
3.1 Definition of a Sequence 61				
3.2 Limit of a Sequence 65				
3.3 Present-Value Calculations 69				
3.4 Properties of Sequences 79				
3.5 Series 84				
Part II Univariate Calculus and Optimiz				

ation

Chapter 4

Continuity of Functions 103

- 4.1 Continuity of a Function of One Variable 103
- 4.2 Economic Applications of Continuous and Discontinuous Functions

Chapter 5 The Derivative and Differential for Functions of One Variable 127 5.1 Definition of a Tangent Line 127 5.2 Definition of the Derivative and the Differential 134 5.3 Conditions for Differentiability 141 5.4 Rules of Differentiation 147 5.5 Higher Order Derivatives: Concavity and Convexity of a Function 5.6 Taylor Series Formula and the Mean-Value Theorem 185			
Chapter 6 Optimization of Functions of One Variable 195 6.1 Necessary Conditions for Unconstrained Maxima and Minima 196 6.2 Second-Order Conditions 211 6.3 Optimization over an Interval 220			
Part III Linear Algebra			
Chapter 7 Systems of Linear Equations 235 7.1 Solving Systems of Linear Equations 236 7.2 Linear Systems in <i>n</i> -Variables 250 Chapter 8 Matrices 267 8.1 General Notation 267 8.2 Basic Matrix Operations 273 8.3 Matrix Transposition 288 8.4 Some Special Matrices 293			
Chapter 9 Determinants and the Inverse Matrix 301 9.1 Defining the Inverse 301 9.2 Obtaining the Determinant and Inverse of a 3 x 3 Matrix 318 9.3 The Inverse of an/ix/i Matrix and Its Properties 324 9.4 Cramer's Rule 329			
Chapter 10 Some Advanced Topics in Linear Algebra 347 10.1 Vector Spaces 347 10.2 The Eigenvalue Problem 363 10.3 Quadratic Forms 378			

175

Part IV Multivariate Calculus

Chapter 11 Calculus for Functions of n-Variables 393 11.1 Partial Differentiation 393 11.2 Second-Order Partial Derivatives 407 11.3 The First-Order Total Differential 415 11.4 Curvature Properties: Concavity and Convexity 436 11.5 More Properties of Functions with Economic Applications 451 11.6 Taylor Series Expansion* 464			
Chapter 12 Optimization of Functions of n-Variables 473 12.1 First-Order Conditions 474 12.2 Second-Order Conditions 484 12.3 Direct Restrictions on Variables 491			
Chapter 13 Constrained Optimization 503 13.1 Constrained Problems and Approaches to Solutions 504 13.2 Second-Order Conditions for Constrained Optimization 516 13.3 Existence, Uniqueness, and Characterization of Solutions 520			
Chapter 14 Comparative Statics 529 14.1 Introduction to Comparative Statics 529 14.2 General Comparative-Statics Analysis 540 14.3 The Envelope Theorem 554			
Chapter 15 Concave Programming and the Kuhn-Tucker Conditions 567 15.1 The Concave-Programming Problem 567 15.2 Many Variables and Constraints 575			
PartV Integration and Dynamic Methods			
Chapter 16 Integration 585 16.1 The Indefinite Integral 585 16.2 The Riemann (Definite) Integral 593 16.3 Properties of Integrals 605			

16.4 16.5	Improper Integrals 613 Techniques of Integration 623
	oter 17 htroduction to Mathematics for Economic Dynamics. 633 Modeling Time 634
•	, , , , , , , , , , , , , , , , , , ,
Noni 19.1	oter 19 inear, First-Order Difference Equations 665 The Phase Diagram and Qualitative Analysis 665 Cycles and Chaos 673
	oter 20 ear, Second-Order Difference Equations 681 The Linear, Autonomous, Second-Order Difference Equation 681 The Linear, Second-Order Difference Equation with a Variable Term 708
Linea 21.1	oter 21 ar, First-Order Differential Equations 715 Autonomous Equations 715 Nonautonomous Equations 731
Nonl 22.1	oter 22 inear, First-Order Differential Equations 739 Autonomous Equations and Qualitative Analysis 739 Two Special Forms of Nonlinear, First-Order Differential Equations 748
	oter 23 ar, Second-Order Differential Equations 753 The Linear, Autonomous, Second-Order Differential Equation 753 The Linear, Second-Order Differential Equation with a Variable Term 772
	oter 24 ultaneous Systems of Differential and Difference Equations 781 Linear Differential Equation Systems 781 Stability Analysis and Linear Phase Diagrams 803 Systems of Linear Difference Equations 825

Chapter 25 Optimal Control Theory 845 25.1 The Maximum Principle 848 25.2 Optimization Problems Involving Discounting 860 25.3 Alternative Boundary Conditions on *x*(*T*) 872 25.4 Infinite-Time Horizon Problems 886

899

909

25.5 Constraints on the Control Variable

25.6 Free-Terminal-Time Problems (*T* Free)

Answers 921 Index 953