PATTERNS OF SPECULATION

A Study in Observational Econophysics

BERTRANDM. ROEHNER

C CAMBRIDGE UNIVERSITY PRESS

Contents

	Pr	eface		page xi		
			i			
I	Ec	1				
1	W	WHY ECONOPHYSICS?				
	1	Newton's apple paradigm revisited		4		
		1.1	Newton's apple	5		
		1.2	An economic parallel	7		
	2	Simple phenomena first		8		
		2.1	Two-body problems	9		
		2.2	Complexity classification	10		
		2.3	The role of time: Simon's bowl metaphor	11		
		2.4	Simple aspects of complex systems	12		
	3	From plausible reasons to regularities		14		
		3.1	The pot of yoghurt paradigm	15		
		3.2	Plausible causes versus scientific explanations	17		
		3.3	Regularities	20		
		3.4	Circumstantial causes versus structural factors	21		
		3.5	Models need accurate empirical targets	21		
	4	Conclusion		22		
		4.1	The primacy of observation	22		
		4.2	"Modest goals"	23		
		4.3	Clusters of events and comparative analysis	23		
2	T	25				
	1	Pre-econophysics Pre-econophysics		26		
		1.1	Pre-econophysicists	27		
		1.2	Assessment of pre-econophysics	28		

vi Contents

1.1

	2	Insti	tutional econophysics	29
		2.1	Idiosyncrasies of economic journals . '	29
		2.2	The beginnings of econophysics	30
		2.3	Neurophysics	31
		2.4	The fractal revolution	33
		2.5	Formation of an econophysical community	33
		2.6	A personal note	34
		2.7	The future of econophysics	35
II	Ho	w do	markets work?	37
3	S	OCIA	AL MAN VERSUS HOMO ECONOMICUS	39
	1	The	social man and the Zeitgeist	40
		1.1	Connection between fast growth sectors and Zeitgeist	41
		1.2	Quantitative measure of the role of the Zeitgeist	45
		1.3	Ways and means of the Zeitgeist	47
	2	Reg	ularities	48
		2.1	The search for uniformities and regularities	48
		2.2	Examples of speculative peaks	49
4	О	RGA	NIZATION OF SPECULATIVE MARKETS	55
	1.	Trer	nds	56
		1.1	Concentration	56
		1.2	The thorny question of commission rates	60
	2	Trac	ding techniques	62
		2.1	Short selling, futures, options	63
		2.2	How to create a successful financial product?	66
		2.3	Protection against market crashes	68
		2.4	Sources of instability: the boomerang effect	70
	3	Org	ganization of the banking system	72
		3.1	The United States	73
		3.2	Canada versus the United States	73
	4	Tim	ne series for stock prices and bankruptcies	74
		4.1	Stock prices	74
		4.2	Downgrades, failure rate, and suspensions	78
Ш		_	arities in speculative episodes	
5	C		LECTIVE BEHAVIOR OF INVESTORS	
	1	Hig	gh-tech booms	

The high-tech boom of the automobile industry

		Contents	vii
	1.2	The phase of "natural selection"	85
	1.3	High-tech booms backed by venture capital	87
2	Fligh	nt to safety	89
	2.1	Grain panics	' 91
	2.2	Nineteenth-century banking panics	91
	2.3	Relationship with grain crisis	92
	2.4	"Deliver us from inflation"	93
	2.5	Flight to quality in equity markets	97
3	To s	ell or not to sell?	103
	3.1	Formulation of the problem '	104
	3.2	Some methodological points	108
	3.3	Short-term response (weekly fluctuations)	108
	3.4	Long-term response (yearly fluctuations)	109
	3.5	Effect of mutual funds purchases on stock prices	112
	3.6	Conclusion	114
4	Con	nection between property and stock markets	1 15
	4.1	Impact of property crashes on economic growth	115
	4.2	Delay in the response of real estate markets	117
	4.3	The connection between property and stock bubbles	1 18
SI	PECU	JLATIVE PEAKS: STATISTICAL	
REGULARITIES '			
1	Α"	thermometer" of speculative frenzy	122
	1.1	Real estate	124
	1.2	Bonds .	125
2	Sha	pe of price peaks	126
	2.1	Empirical evidence for asymmetry parameters	128
	2.2	Mathematical description of the shape of peaks	130
	2.3	Empirical evidence for shape parameters	131
3	Sto	ck market crashes	133
	3.1	When?	134
	3.2	How?	135
	3.3	Overnight crashes	137
	3.4	Lawsuits in the wake of market crashes	139
4		ding volume	140
	4.1	Volume at the level of individual stocks	140
	4.2	Volume movements at market level	141
5		onomic consequences of stock market collapses	143
	5.1	Consumer confidence	144

viii Contents

1.1

Description

		5.2	Relationship between stock price levels and		
			commission rates •	149	
		5.3	Effect on the distribution of income	151	
IV	Theoretical framework				
7	T	WO (CLASSES OF SPECULATIVE PEAKS	157	
	1	Spe	culative peaks: two illustrative examples	158	
		1.1	Wheat price peaks	158	
		1.2	Real estate prices k	158	
	2	The	price multiplier criterion	160	
	3	The	ensemble dispersion criterion	163	
	4	Two	classes	167	
	5	Bon	d market	172	
	6	Diff	Perences in response times	175	
		6.1	Dispersion of peak times	175	
		6.2	Relationship between amplitude and response time	176	
8	8 DYNAMICS OF SPECULATIVE PEAKS:				
	TI	HEO	RETICAL FRAMEWORK	177	
	1	Mai	in ideas	178	
		1.1	A comparative perspective	178	
		1.2	Shock versus permanent monitoring	179	
		1.3	Users and speculators	179	
		1.4	Transaction friction	180	
		1.5	Agents and markets form a compound	182	
	2	Imp	olementation	183	
		2.1	Recapitulation of empirical regularities	183	
		2.2	Dynamic equations: first order	183	
		2.3	Dynamic equations: second order	184	
		2.4	Dynamic equations: higher orders	185	
		2.5	Light or heavy damping?	186	
	3	Imp	blications	188	
		3.1	Amplitude versus duration of the ascending phase	188	
		3.2	Peak amplitude and proportion of investors	190	
		3.3	Synchronization effects	193	
		App	pendix A: Green's function for a fourth-order equation	195	
9	T	НЕО	RETICAL FRAMEWORK: IMPLICATIONS	198	
	1	The	e resilience effect	199	

199

1X

	1.2	Interpretation		200
	1.3	Statistical evidence		202
2	Breakdown of scaling			
	2.1	First-order process	<	204
	2.2	Second-order process		207
3	Ens	emble coefficient of variation		208
4	The	stochastic spatial arbitrage model for U-class goods		211
5	Perspectives			
M	ain de	ata sources '		216
Re	References			219
Inc	Index			