MARCH OF THE PARAMETER OF A REPAREMENT OF A REPAREMENT

Advanced Series on

Statistical Science &

Applied Probability

ESSENTIALS OF STOCHASTIC FINANCE Facts, Models, Theory

Albert N. Shiryaev

Steklov Mathematical Institute and Moscow State University

Translated from the Russian by **N. Kruzhilin**

Contents

.

Foreword	xiii
Part 1. Facts. Models	1
Chapter I. Main Concepts, Structures, and Instruments. Aims and Problems of Financial Theory and Financial Engineering	2
1. Financial structures and instruments § 1a. Key objects and structures § 1b. Financial markets § 1c. Market of derivatives. Financial instruments	3 3 6 20
 Financial markets under uncertainty. Classical theories of the dynamics of financial indexes, their critics and revision. Neoclassical theories § 2a. Random walk conjecture and concept of efficient market 	$\frac{35}{37}$
 § 2b. Investment portfolio. Markowitz's diversification § 2c. CAPM: Capital Asset Pricing Model § 2d. APT: Arbitrage Pricing Theory	46 51 56
 of efficient market. I	60 65
 3. Aims and problems of financial theory, engineering, and actuarial calculations	69 69 71 77

Chapter II. Stochastic Models. Discrete Time	80
1. Necessary probabilistic concepts and several models	
of the dynamics of market prices	81
1a. Uncertainty and irregularity in the behavior of prices.	
Their description and representation in probabilistic terms	81
\S 1b. Doob decomposition. Canonical representations	89
§1c. Local martingales. Martingale transformations. Generalized	
martingales	95
§1d. Gaussian and conditionally Gaussian models	103
1e. Binomial model of price evolution	109
§1f. Models with discrete intervention of chance	112
2. Linear stochastic models	117
$\S2a$. Moving average model $MA(q)$	119
§ 2b. Autoregressive model $AR(p)$	125
$\S2c$. Autoregressive and moving average model $ARMA(p,q)$	
and integrated model $ARIMA(p, d, q)$	138
2d. Prediction in linear models	142
3. Nonlinear stochastic conditionally Gaussian models	152
§3a. ARCH and GARCH models	153
§ 3b. EGARCH, TGARCH, HARCH, and other models	163
§3c. Stochastic volatility models	168
4. Supplement: dynamical chaos models	176
§4a. Nonlinear chaotic models	176
§4b. Distinguishing between 'chaotic' and 'stochastic' sequences	183
Chapter III. Stachastia Madela, Continuous Timo	100
chapter III. Stochastic Models. Continuous Time	199
1. Non-Gaussian models of distributions and processes	189
§1a. Stable and infinitely divisible distributions	189
§1b. Lévy processes	200
§1c. Stable processes	207
§1d. Hyperbolic distributions and processes	214
2. Models with self-similarity. Fractality	221
$\S 2a$. Hurst's statistical phenomenon of self-similarity $\ldots \ldots \ldots$	221
$\S 2b$. A digression on fractal geometry $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	224
§2c. Statistical self-similarity. Fractal Brownian motion	226
$\S 2d$. Fractional Gaussian noise: a process with strong after effect	232
3. Models based on a Brownian motion	236
§3a. Brownian motion and its role of a basic process	236

Contents

§3b. Brownian motion: a compendium of classical results	240
§3c. Stochastic integration with respect to a Brownian motion	251
§3d. Itô processes and Itô's formula	257
§ 3e. Stochastic differential equations	264
§3f. Forward and backward Kolmogorov's equations. Probabilistic	
representation of solutions	271
4. Diffusion models of the evolution of interest rates, stock and	
bond prices	278
§4a. Stochastic interest rates	278
§4b. Standard diffusion model of stock prices (geometric Brownian	
motion) and its generalizations	284
$\S4c$. Diffusion models of the term structure of prices in a family of bonds	289
5. Semimartingale models	294
§ 5a. Semimartingales and stochastic integrals	294
§5b. Doob–Meyer decomposition. Compensators. Quadratic variation .	301
§ 5c. Itô's formula for semimartingales. Generalizations	307
• -	
Unapter IV. Statistical Analysis of Financial Data	314

1.	Emp	irical data. Probabilistic and statistical models	
	of th	eir description. Statistics of 'ticks'	315
	$\S1a.$	Structural changes in financial data gathering and analysis	315
	§1b.	Geography-related features of the statistical data on exchange rates	318
	§1c.	Description of financial indexes as stochastic processes	
		with discrete intervention of chance	321
	$\S1d.$	On the statistics of 'ticks'	324
2.	Stati	stics of one-dimensional distributions	327
	§2a.	Statistical data discretizing	327
	$\S 2b.$	One-dimensional distributions of the logarithms of relative	
		price changes. Deviation from the Gaussian property	
		and leptokurtosis of empirical densities	329
	§ 2c.	One-dimensional distributions of the logarithms of relative	
		price changes. 'Heavy tails' and their statistics	334
	§ 2d.	One-dimensional distributions of the logarithms of relative	
		price changes. Structure of the central parts of distributions	340
3.	Stati	stics of volatility, correlation dependence,	
	and	aftereffect in prices	345
	§ 3a.	Volatility. Definition and examples	345
	§ 3b.	Periodicity and fractal structure of volatility in exchange rates	351

. 354
. 358
. 364
. 367
. 367
. 376

Part 2. Theory

381

Chapter V. Theory of Arbitrage in Stochastic Financial Models. Discrete Time	382
1. Investment portfolio on a (<i>B</i> , <i>S</i>)-market	383
§1a. Strategies satisfying balance conditions§1b. Notion of 'hedging'. Upper and lower prices.	383
Complete and incomplete markets	395
\S 1c. Upper and lower prices in a single-step model \ldots	399
1d. <i>CRR</i> -model: an example of a complete market	408
2. Arbitrage-free market	410
\S 2a. 'Arbitrage' and 'absence of arbitrage'	410
\S 2b. Martingale criterion of the absence of arbitrage.	
First fundamental theorem	413
\S 2c. Martingale criterion of the absence of arbitrage.	
Proof of sufficiency	417
§ 2d. Martingale criterion of the absence of arbitrage. Proof of necessity (by means of the Esscher conditional	
transformation)	417
\S 2e. Extended version of the First fundamental theorem	424
3. Construction of martingale measures	
by means of an absolutely continuous change of measure	433
§ 3a. Main definitions. Density process	433
§ 3b. Discrete version of Girsanov's theorem. Conditionally Gaussian case	439
\S 3c. Martingale property of the prices in the case of a conditionally	
Gaussian and logarithmically conditionally Gaussian distributions	446
§ 3d. Discrete version of Girsanov's theorem. General case	450
3 3e. Integer-valued random measures and their compensators.	
transformation of compensators under absolutely continuous changes of measures. 'Stochastic integrals'	450
$\delta^{2}f$ (Predictable) criteria of arbitrage free (B, S) markets	409
350 i reductable cineria of arothage-free (D, G) -markets \dots	407

Contents

4. Complete and perfect arbitrage-free markets	481
\S 4a. Martingale criterion of a complete market.	
Statement of the Second fundamental theorem. Proof of necessity	481
4b. Representability of local martingales. 'S-representability'	483
§ 4c. Representability of local martingales	
(' μ -representability' and ' $(\mu - \nu)$ -representability')	485
\S 4d. 'S-representability' in the binomial CRR-model	488
§ 4e. Martingale criterion of a complete market.	
Proof of necessity for $d = 1$	491
\S 4f. Extended version of the Second fundamental theorem $\ldots \ldots \ldots$	497
Chapter VI. Theory of Pricing in Stochastic Financial Models.	
Discrete Time	502
1. European hedge pricing on arbitrage-free markets	503
1a. Risks and their reduction	503
§1b. Main hedge pricing formula. Complete markets	505
\S 1c. Main hedge pricing formula. Incomplete markets	512
\S 1d. Hedge pricing on the basis of the mean square criterion	518
\S 1e. Forward contracts and futures contracts \ldots	521
2. American hedge pricing on arbitrage-free markets	525
§2a. Optimal stopping problems. Supermartingale characterization	525
§2b. Complete and incomplete markets.	
Supermartingale characterization of hedging prices	535
$\S 2c.$ Complete and incomplete markets.	
Main formulas for hedging prices; '	538
$\S 2d$. Optional decomposition	546
3. Scheme of series of 'large' arbitrage-free markets	
and asymptotic arbitrage	553
\S 3a. One model of 'large' financial markets	553
\S 3b. Criteria of the absence of asymptotic arbitrage \ldots	555
§ 3c. Asymptotic arbitrage and contiguity	559
\S 3d. Some issues of approximation and convergence in the scheme	
of series of arbitrage-free markets	575
4. European options on a binomial (B, S) -market	588
§4a. Problems of option pricing	588
$\S4b$. Rational pricing and hedging strategies.	
Pay-off function of the general form	590
§ 4c. Rational pricing and hedging strategies.	
Markovian pay-off functions	-595

Contents	5
----------	---

§ 4d. Standard call and put options	$\frac{598}{604}$
5. American options on a binomial (B, S) -market	608
§ 5a. American option pricing	608
§ 5b. Standard call option pricing	611
§ 5c. Standard put option pricing	621
\S 5d. Options with after effect. 'Russian option' pricing	625
Chapter VII. Theory of Arbitrage in Stochastic Financial Models.	630
	032
1. Investment portfolio in semimartingale models	633
\S 1a. Admissible strategies. Self-financing. Stochastic vector integral	633
§ 1b. Discounting processes	643
§ Ic. Admissible strategies. Some special classes	646
2. Semimartingale models without opportunities for arbitrage.	640
8.22 Concept of absence of arbitrage and its modifications	649
8 2b. Martingale criteria of the absence of arbitrage.	043
Sufficient conditions	651
§ 2c. Martingale criteria of the absence of arbitrage.	
Necessary and sufficient conditions (a list of results)	655
§ 2d. Completeness in semimartingale models	660
3. Semimartingale and martingale measures	662
\S 3a. Canonical representation of semimartingales.	
Random measures. Triplets of predictable characteristics	662
§ 3b. Construction of marginal measures in diffusion models.	050
Girsanov's theorem	672
§ 3c. Construction of martingale measures for Levy processes.	683
8.3d Predictable criteria of the martingale property of prices. I	691
8 3e. Predictable criteria of the martingale property of prices. II	694
§ 3f. Representability of local martingales (' $(H^c, \mu - \nu)$ -representability')	698
§ 3g. Girsanov's theorem for semimartingales.	
Structure of the densities of probabilistic measures	701
4. Arbitrage, completeness, and hedge pricing in diffusion	
models of stock	704
$\S4a$. Arbitrage and conditions of its absence. Completeness $\ldots \ldots$	704
\S 4b. Price of hedging in complete markets \ldots	709
§4c. Fundamental partial differential equation of hedge pricing	712

~					
Сo	n	te	n	t	s

5. Arbitrage, completeness, and hedge pricing in diffusion	
% 5a Models without opportunities for arbitrage	717
8.5h. Completeness	728
§ 5c. Fundamental partial differentai equation of the term structure	120
of bonds	730
Chapter VIII. Theory of Pricing in Stochastic Financial Models.	
Continuous Time	734
1. European options in diffusion (B, S) -stockmarkets	735
§1a. Bachelier's formula	735
§ 1b. Black–Scholes formula. Martingale inference § 1c. Black–Scholes formula. Inference based on the solution	739
of the fundamental equation	745
1d. Black–Scholes formula. Case with dividends \ldots	748
2. American options in diffusion (B, S) -stockmarkets.	
Case of an infinite time horizon	751
§ 2a. Standard call option	751
§ 26. Standard put option	763
§ 2c. Combinations of put and can options	(00 767
2 A maximum antiona in diffusion (P. S) at a algorithms	101
Finite time horizons	778
§ 3a. Special features of calculations on finite time intervals	778
§ 3b. Optimal stopping problems and Stephan problems	782
§ 3c. Stephan problem for standard call and put options	784
\S 3d. Relations between the prices of European and American options .	788
4. European and American options in a diffusion	
(B,\mathcal{P}) -bondmarket	792
§4a. Option pricing in a bondmarket	792
$\S4b$. European option pricing in single-factor Gaussian models $\ldots \ldots$	795
4c. American option pricing in single-factor Gaussian models $\ldots \ldots$	799
Bibliography	803
Index	825
Index of symbols	833

~