

| Preface    |                                                                                                     | vii |
|------------|-----------------------------------------------------------------------------------------------------|-----|
| PART I     | THEORY AND APPLICATIONS OF<br>DERIVATIVES MODELING                                                  | 1   |
| Chapter    | 1 Introduction to Counterparty Credit Risk                                                          | 3   |
| 1.1<br>1.2 | Credit Charge, Credit Benefit, and Credit Premium<br>Credit Cost, Accrued Funding Cost, and Accrued | 8   |
|            | Funding Benefit                                                                                     | 14  |
| 1.3        | Trading Strategies and Opportunities                                                                | 17  |
| 1.4        | Comparison with Bond Credit Risk                                                                    | 28  |
| 1.5        | Prevailing Strategies for Counterparty Credit Risk                                                  |     |
|            | Management ;                                                                                        | 30  |
| 1.6<br>1.7 | Wrong-way and Right-way Exposures or Trades<br>Introduction to Modeling and Pricing of Counterparty | 33  |
|            | Credit Risk                                                                                         | 35  |
| Chapter    | 2 Martingale Arbitrage Pricing in Real Market                                                       | 37  |
| 2.1        | Basics of Arbitrage                                                                                 | 38  |
| 2.1.1 A    | rbitrage Opportunity and A rbitrage Pricing 3                                                       | 8   |
| 2.1.2      | Self Financing Trading Strategies and Arbitrage                                                     | 42  |
| 2.2        | Subtleties in Arbitrage Pricing in Real Market                                                      | 45  |
| 2.2.7      | Counterparty Credit Risk                                                                            | 45  |
| 2.2.2'     | The Risk-free Interest Rate                                                                         | 45  |
| 2.23       | Bid/Ask Spread                                                                                      | 49  |

| 224    |                                                        | 51   |
|--------|--------------------------------------------------------|------|
| 2.2.4  | Un-hedgeable Variables                                 | 51   |
| 2.2.5  | Primary Model Calibration and Secondary Model          | 50   |
|        | Calibration                                            | 53   |
| 2.2.6  | Models for Pricing, Models for Hedging, and Hedging    |      |
|        | Calibration                                            | 56   |
| 2.2.7  | Incomplete Market and Completing the Market            | 60   |
| 2.3    | Arbitrage Models and Non-arbitrage Models              | . 61 |
| 2.3.1  | Arbitrage Models and Non-arbitrage Models .            | 61   |
| 2.3.2  | Financial Market Participants and Financial Activities | 63   |
| 2.4    | Trading Opportunities and Strategies                   | 66   |
| 2.4.1  | Simple Bonds and IR Swaps                              | 68   |
| 2.4.2  | Callable Bonds and Cancelable IR Swaps                 | 72   |
| 2.4.3  | Examples of Practical Complications                    | 73   |
| 2.4.4  | Structured Notes and Exotic Derivatives                | lA   |
| 2.4.5  | 1R/FX Hybrid Notes and Derivatives                     | 79   |
| 2.4.6  | Asset Swaps and Repackaging                            | 82   |
| 2.4.7  | Credit Hybrid Derivatives                              | 82   |
| 2.4.8  | Capital Structure Arbitrage                            | 84   |
| 2.4.9  | Quasi-arbitrage Opportunities                          | 86   |
| 2.4.10 |                                                        | 87   |
| 2.5    | Martingale Arbitrage Modeling                          | 89   |
| 2.5.1  | Harrison-Pliska Martingale No-arbitrage Theorem        | 89   |
| 2.5.2  | Martingale Derivatives Pricing in a Binomial           |      |
|        | Economy                                                | 91   |
| 2.5.3  | Harrison-Pliska Martingale No-arbitrage Theorem        |      |
|        | for Assets with Intermediate Cashflows or Income       | 96   |
| 2.5.4  | Foundation for Arbitrage Pricing                       | 97   |
|        | Examples of Martingales and Equivalent Martingale      |      |
|        | Measures                                               | 98   |
| 2.5.6  | Martingale Representation and SDEfor Derivatives       |      |
|        | Pricing                                                | 101  |
| 2.5.7  | Change of Probability Measure and Importance           |      |
|        | Sampling                                               | 109  |
| 2.5.8  | PDE for Derivatives Pricing and P&L Decomposition      | 113  |
| 2.5.9  | SABR Stochastic Volatility Model                       | 118  |
|        | ) An Example of Martingale Modeling in Real Market     | 119  |
| 2.6    | Problems                                               | 122  |

xvi

| Chapte | ers The Black-Scholes Framework and Extensions        | 123  |
|--------|-------------------------------------------------------|------|
| 3.1    | More on Martingale Models                             | 123  |
| 3.1.1  | Single State Variable and Single Numeraire            | 124  |
| 3.1.2  | Single State Variable and Multiple Numeraires         | 133  |
| 3.2    | Black's Model                                         | 142  |
| 3.3    | Put-Call Parity Revised •                             | 143  |
| 3.4    | Replication Model                                     | 147  |
| 3.5    | Impact of Volatility Skews and Smiles on Hedge Ratios |      |
|        | and Hedging Strategies                                | 149  |
| 3.6    | Other Extensions of Black-Scholes Framework           | 152  |
| Chapte | er 4 Martingale Resampling and Interpolation          | 153  |
| 4.1    | Martingale Interpolation                              | 159  |
| 4.2    | Brownian Bridge Interpolation                         | 164  |
| 4.3    | Moment Matching in One-factor Case                    | 167  |
| 4.3.1  | Quadratic Resampling .                                | 168  |
|        | Moment Matching for All Odd Moments and Kurtosis      | 168  |
| 4.3.3  | Moment Matching for Higher Order Moments              | 172  |
| 4.3.4  | Conditional Quadratic Resampling                      | 174  |
| 4.4    | Moment Matching in Multi-factor Case                  | 178  |
| 4.5    | Martingale Resampling                                 | 180  |
| 4.5.1  | Unconditional Martingale Resampling at the State      |      |
|        | Variable Level                                        | 1.81 |
| 4.5.2  | Conditional Martingale Resampling at the State        |      |
|        | Variable Level ,                                      | 192  |
| 4.5.3  | Brownian Bridge Resampling at the State Variable      |      |
|        | Level                                                 | 197  |
| 4.5.4  | Martingale Control Variate at the Underlying          |      |
|        | Instrument Level                                      | 198  |
| 4.5.5  | Martingale Resampling at the Derivatives Price Level  | 200  |
| 4.5.6  | Application to Secondary Model Calibration            | 202  |
| 4.6    | Other Applications of Martingale Resampling           | 203  |
| 4.6.1  | Modeling of Multiple Indices                          | 204  |
| 4.6.2  | JLT Risk Neutralization of Credit Rating Transition   |      |
|        | Process                                               | 205  |
| 4.6.3  | Calibration of Credit Spread Processes                | 208  |
| 4.6.4  | Risk Neutralization of Mortgage Prepayment Model      | 210  |
| 4.7    | Accuracy and Precision Tests                          | 210  |
| 4.8    | Examples of Numerical Results                         | 210  |
|        |                                                       |      |

| Chapter : | 5 Introduction to Interest Rate Term Structure        |     |
|-----------|-------------------------------------------------------|-----|
| -         | Modeling                                              | 212 |
| 5.1       | Interest Rate Models Classification                   | 212 |
| 5.2       | Short Rate Models                                     | 213 |
| 5.2.1     | Gaussian Short Rate Models                            | 214 |
| 5.2.2     | Lognormal Short Rate Models                           | 215 |
| 5.2.3     | Constant Elasticity of Variance Models                | 215 |
| 5.3       | Affine Models and Quadratic Models                    | 215 |
| 5.4       | What Interest Rate Models Should One Use?             | 216 |
| Chapter   | 6 The Heath-Jarrow-Morfon Framework                   | 218 |
| 6.1       | The Heath-Jarrow-Morton Model                         | 218 |
| 6.2       | The Ritchken-Sankarasubramanian <sup>1</sup> Model    | 224 |
| 6.3       | The Inui-Kijima Model'                                | 228 |
| 6.4       | Overview of Numerical Implementations of the RS and   |     |
|           | the IK Model                                          | 234 |
| 6.4.1     | Recombining Trinomial Tree Technique                  | 234 |
| 6.4.2     | Adaptive Recombining Trinomial Tree Technique         | 239 |
| 6.4.3 O   | verview of Applications of the Adaptive Trinomial     |     |
|           | Tree Technique to the RS Model and the IK Model       | 241 |
| 6.5       | Appendix                                              | 242 |
|           | Closed-form Solutions for the RS Model                | 242 |
| 6.5.2 C   | Closed-form Solutions for the IK Model                | 246 |
| Chapter   | 7 The Interest Rate Market Model                      | 249 |
| 7.1       | BGM Model versus HJM Model                            | 250 |
| 7.2       | The Brace-Gatarek-Musiela Original Approach           | 252 |
| 7.3       | Comparison Between HJM and BGM Models                 | 256 |
| 7.4       | Jamshidian's Approach                                 | 258 |
| 7.5       | Martingale Approach                                   | 259 |
| 7.5.1 T   | he LIBOR Market Model and the Black Formula for       |     |
|           | Caps/Floors                                           | 259 |
| 7.5.2 T   | he Swap Market Model and the Black Formula for        |     |
|           | European Swaptions                                    | 266 |
| 7.6       | Overview of Simultaneous and Globally Consistent      |     |
|           | Pricing and Hedging                                   | 273 |
| 7.6.1     | Simultaneous Consistent Pricing Through Approximation | 275 |
| ,7.6.2    | More on Simultaneous Consistent Pricing               | 279 |

| 7.7           | More on the Martingale or Full-dimensional LIBOR      |     |
|---------------|-------------------------------------------------------|-----|
|               | Market Model                                          | 283 |
| 7.8           | Modeling Interest Rate Volatility Skew and Smile      | 287 |
| 7.8.1 (       | CEV and LCEV Models for Modeling the Volatility Skew  | 288 |
| 7.8.2         | Examples of Volatility Skew for Caplets and Swaptions | 290 |
| 7.9           | The Nonexploding Bushy Tree Technique                 | 292 |
| 7.9.1         | Construction of a Nonexploding Bushy Tree             | 294 |
| 7.9.2         | Modeling Stochastic Processes on a Nonexploding       |     |
|               | Bushy Tree                                            | 297 |
| 7.9.3         | Application of Martingale Control Variate Technique   | 301 |
| 7.9.4         | Numerical Results                                     | 303 |
| 7.10          | General Framework for Multi-factor Modeling for       |     |
|               | Hybrid Market                                         | 312 |
| 7.11          | Stochastic Volatility BGM Models                      | 314 |
| 7.12          | Examples of Stochastic Volatility BGM Model Results   | 316 |
| 7.13          | Appendix                                              | 317 |
| 7.13.1        | More Numerical Results Obtained With the NBT          |     |
|               | Technique                                             | 317 |
| 7.13.2        | Sufficient Conditions for Convergence '               | 319 |
| 7.13.3        | Application of Girsanov's Change of Measure Theorem   |     |
|               | to Derivation of the Martingale or Full-dimensional   |     |
|               | LIBOR Market Model                                    | 323 |
| Chapte        | r 8 Credit Risk Modeling and Pricing                  | 327 |
| 8.1           | Pricing Simple Defaultabl <sup>A</sup> Instruments    | 328 |
| 8.2           | Default Contingent Instruments                        | 334 |
| 8.3           | A Simple Markov Chain Model                           | 335 |
| 8.4           | Modeling Correlated Default Event Processes with a    |     |
|               | Factor Model                                          | 341 |
| 8.5           | Modeling Correlated Default Time Processes with the   | -   |
|               | Copula Approach                                       | 348 |
| 8.6           | Recovery Rate Modeling                                | 350 |
| 8.7           | Risky Market Model for Credit Spread Modeling         | 351 |
| 8.8           | Joint Credit Spread and Default Modeling              | 359 |
| 8.9           | Counterparty Credit Risk Pricing in OTC Derivatives   | 362 |
| 8.9.1         | Credit Charge Calculation                             | 365 |
| 8.9.2         | Expected and Potential Exposures and Expected         |     |
|               | Shortfall                                             | 366 |
| 8. <i>9.3</i> | Credit Benefit Calculation                            | 368 |

| 8.9.4  | Collateral or Margin Agreement                         | 369 |
|--------|--------------------------------------------------------|-----|
| 8.9.5  | Net Credit Charge and Funding Spread Calculation       | 370 |
| 8.9.6  | Martingale Relationships in Credit Charge Calculations | 372 |
| 8.9.7  | Closed-form Solutions and Approximations               | 374 |
| 8.10   | Framework for Counterparty Credit Risk Modeling and    |     |
|        | Pricing                                                | 378 |
| 8.10.1 | Centralized Market Process Modeling and Scenario       |     |
|        | Generation Engine                                      | 380 |
| 8.10.2 | Exposure or MTM Modeling Engine                        | 380 |
| 8.10.3 | New Trade and Real-time Exposure or MTM Modeling       |     |
|        | Engine                                                 | 382 |
| 8.10.4 | Counterparty Credit Process Modeling and Scenario      |     |
|        | Generation Engine                                      | 383 |
| 8.10.5 | Portfolio Effect Handling and Aggregation Engine       | 383 |
| 8.10.6 | Counterparty Credit Risk Pricing Engine                | 384 |
| 8.10.7 | Sensitivity and Scenario Analysis Engine 3             | 84  |
| 8.10.8 | Unexpected Risk Modeling Engine                        | 385 |
|        |                                                        |     |
| PART 1 | II INTEREST RATE MARKET FUNDAMENTALS                   |     |

# PART II INTEREST RATE MARKET FUNDAMENTALS AND PROPRIETARY TRADING STRATEGIES 387

| Chapter 9 | 9 Simple Interest Rate Products  | 389 |
|-----------|----------------------------------|-----|
| 9.1       | Treasury Issues                  | 389 |
| 9.1.1     | Treasury Bills                   | 389 |
| 9.1.2     | Treasury Notes and Bonds         | 390 |
| 9.2       | Futures Contracts                | 391 |
| 9.2.1     | Euro-dollars and LIBOR           | 392 |
| 9.2.2     | Euro-dollar Futures              | 392 |
| 9.2.3     | Note and Bond Futures            | 393 |
| 9.3       | Interest Rate Derivatives        | 394 |
| 9.4       | Interest Rate Swaps              | 394 |
| 9.4.1     | Plain Vanilla Interest Rate Swap | 394 |
| 9.4.2     | Forward Swap                     | 395 |
| 9.4.3     | Basis Swap                       | 395 |
| 9.4.4     | Constant Maturity Swap           | 395 |
| 9.4.5     | Swaption                         | 395 |
| 9.5       | Bond Options                     | 396 |
| 9.5.1     | OTC Options                      | 396 |

| Chapter | 10 Yield Curve Modeling                              | 397   |
|---------|------------------------------------------------------|-------|
| 10.1    | Introduction                                         | 397   |
| 10.2    | The Bootstrap Method                                 | 398   |
| 10.3    | Orthogonal Exponential Spline Model                  | 399   |
| 10.3.1  | Exponential Basis Functions                          | 400   |
| 10.3.2  | Maximum Likelihood Estimates for Spline Coefficients | 403   |
| 10.3.3  | Implementation of the Spline Model                   | 405   |
| 10.3.4  | Summary                                              | 406   |
| 10.4    | Swap Curve                                           | 406   |
| 10.4.1  | Constructing Euro-dollar Strip Curve                 | 407   |
| 10.4.2  | Convexity Adjustment                                 | 408   |
| Chapter | 11 Two-Factor Risk Model                             | 411   |
| 11.1    | PCA and TFRM Methodologies                           | 411   |
| .11.2   | Principal Components Analysis                        | 413   |
| 11.3    | Two-factor Risk Model Specification                  | 418   |
| 11.4    | Empirical Validation                                 | 421   |
| 11.5    | Applications                                         | 423   |
| 11.5.1  | Level-hedged Bullet/Barbell Trades                   | 423   |
| 11.5.2  | Two-factor Portfolio Hedging Strategy                | 423   |
| 11.5.3  | Bond Indices with Level and Curve Risk Profile       | 426   |
| ir.6    | Adjusted Durations                                   | 427   |
| 11.6.1  | ^-Adjusted Duration                                  | 430   |
| 11.6.2  | Hedging the Extremely Long End                       | 432   |
| 11.7    | Future Directions                                    | 433   |
| Chapter | 12 The Holy Grail — Two-Factor Interest Rate         |       |
|         | Arbitrage                                            | 434   |
| 12.1    | Profit, Loss, and Financing Costs                    | 434   |
| 12.2    | Two-factor Arbitrage                                 | 435   |
| 12.3    | Trading Strategy                                     | 437   |
| Chapter | 13 Yield Decomposition Model                         | 440   |
| 13.1    | Volatility Adjusted Duration                         | " 441 |
| 13.2    | Dollar Value of Convexity                            | 442   |
| 13.3    | Expected Total Rate of Return                        | 443   |
| 13.4    | Measurement of Risk Premium                          | 444   |
| 13.5    | Expectation Curve                                    | 445   |

|     | ٠ |
|-----|---|
| XX1 | 1 |
|     | • |

| 13.6<br>13.7 | Expected FED Funds Rate<br>Yield Decomposition Analysis | 447<br>447 |
|--------------|---------------------------------------------------------|------------|
| 13.8         | Discussion                                              | 448        |
| 15.0         |                                                         | 440        |
| Chapter 2    | 14 Inflation Linked Instruments Modeling                | 450        |
| 14.1         | Inflation Swaps                                         | 451        |
| 14.2         | Functions and Applications                              | 452        |
| 14.2.1       | Asset/Liability Management                              | 453        |
| 14.2.2       | Inflation Swaps as Hedging and Trading Instruments      | 453        |
| 14.2.3       | Investment Alternatives                                 | 453        |
| 14.2.4       | Inflation Linked Debt Issuance                          | 454        |
| 14.2.5       | Complementary to Interest Rate Swaps                    | 454        |
| 14.3         | Inflation Swap Level                                    | 455        |
| 14.4         | Real Rate Swap Curve'                                   | 456        |
| 14.5         | Zero-coupon Inflation Swap Curve Valuation Methods      | 457        |
| 14.6         | Risk Measures and Hedging                               | 458        |
| 14.7         | Prospect of the Inflation Swap Business                 | 460        |
| Chapter      | 15 Interest Rate Proprietary Trading Strategies         | 461        |
| 15.1         | Rich/Cheap Trade                                        | 462        |
| 15.2         | Rich/Cheap Analysis                                     | 464        |
| 15.2.1       | Yield Curve Sector Rich/Cheap Analysis                  | 464        |
| 15.2.2       | Rich'Cheap Analysis for Notes and Bonds                 | 466        |
| 15.3         | Bond/Swap Trade                                         | 468        |
| 15.4         | Curvature Trade                                         | 469        |
| 15.5         | Spread Trade                                            | 470        |
| 15.6         | Box Trade                                               | 472        |
| 15.7         | OAT Floater Trade                                       | 472        |
| 15.8         | Cash/Futures Trade                                      | 473        |
| 15.9         | A Generic Convergence Trading Strategy                  | 473        |
| 15.10        | Other Factors Related to Trading Strategy               | 476        |
| 15.10.1      | Transaction Cost                                        | 476        |
| 15.10.2      | Higher Risk and Highly Profitable Trades                | 477        |
|              | Bet Big When All Components Line Up                     | 478        |
|              | Human Judgment                                          | 478        |
| Referenc     | es                                                      | 479        |
| Index        |                                                         | 491        |