Business and Scientific Workflows

A Web Service-Oriented Approach

Wei Tan
MengChu Zhou
Contents

Foreword

Preface

1. Introduction
 1.1 Background and Motivations, 1
 1.1.1 Web Service and Service-Oriented Architecture, 1
 1.1.2 Workflow Technology, 4
 1.2 Overview of Standards, 8
 1.2.1 Web Service-Related Standards, 8
 1.2.2 Workflow-Related Standards, 19
 1.3 Workflow Design: State of the Art, 22
 1.3.1 Automatic Service Composition, 22
 1.3.2 Mediation-Aided Service Composition, 23
 1.3.3 Verification of Service-Based Workflows, 24
 1.3.4 Decentralized Execution of Workflows, 25
 1.3.5 Scientific Workflow Systems, 26
 1.4 Contributions, 27

2. Petri Net Formalism
 2.1 Basic Petri Nets, 29
 2.2 Workflow Nets, 32
 2.3 Colored Petri Nets, 35

3. Data-Driven Service Composition
 3.1 Problem Statement, 40
 3.1.1 Domains and Data Relations, 41
 3.1.2 Problem Formulation, 43
 3.2 Data-Driven Composition Rules, 45
 3.2.1 Sequential Composition Rule, 46
 3.2.2 Parallel Composition Rule, 46
 3.2.3 Choice Composition Rule, 47
 3.3 Data-Driven Service Composition, 48
 3.3.1 Basic Definitions, 48
 3.3.2 Derive AWSP from Service Net, 50
Contents

3.4 Effectiveness and Efficiency of the Data-Driven Approach, 55
3.4.1 Solution Effectiveness, 55
3.4.2 Complexity Analysis, 56
3.5 Case Study, 57
3.6 Discussion, 60
3.7 Summary, 61
3.8 Bibliographic Notes, 62

4. Analysis and Composition of Partially-Compatible Web Services
4.1 Problem Definition and Motivating Scenario, 65
4.1.1 A Motivating Scenario, 68
4.2 Petri Net Formalism for BPEL Service, Mediation, and Compatibility, 70
4.2.1 CPN Formalism for BPEL Process, 70
4.2.2 CPN Formalism for Service Composition, 73
4.2.3 Mediator and Mediation-Aided Service Composition, 75
4.3 Compatibility Analysis via Petri Net Models, 78
4.3.1 Transforming Abstract BPEL Process to SWF-net, 79
4.3.2 Specifying Data Mapping, 80
4.3.3 Mediator Existence Checking, 81
4.3.4 Proof of Theorem 4.1, 85
4.4 Mediator Generation Approach, 88
4.4.1 Types of Mediation, 88
4.4.2 Guided Mediator Generation, 90
4.5 Bibliographic Notes, 94
4.5.1 Web Service Composition, 94
4.5.2 Business Process Integration, 94
4.5.3 Web Service Configuration, 94
4.5.4 Petri Net Model of BPEL Processes, 94
4.5.5 Component/Web Service Mediation, 95

5. Web Service Configuration with Multiple Quality-of-Service Attributes
5.1 Introduction, 99
5.2 Quality-of-Service Measurements, 104
5.2.1 QoS Attributes, 104
5.2.2 Aggregation, 104
5.2.3 Computation of QoS, 105
5.3 Assembly Petri Nets and Their Properties, 107
5.3.1 Assembly and Disassembly Petri Nets, 107
5.3.2 Definition of Incidence Matrix and State-Shift Equation, 110
5.3.3 Definition of Subgraphs and Solutions, 111
5.4 Optimal Web Service Configuration, 114
 5.4.1 Web Service Configuration under Single QoS Objective, 115
 5.4.2 Web Service Configuration under Multiple QoS Objectives, 116
 5.4.3 Experiments and Performance Analysis, 117
5.5 Implementation, 121
5.6 Summary, 123
5.7 Bibliographic Notes, 124

6. A Web Service-Based Public-Oriented Personalized Health Care Platform

 6.1 Background and Motivation, 127
 6.2 System Architecture, 129
 6.2.1 The System Architecture of PHISP, 129
 6.2.2 Services Encapsulated in PHISP, 131
 6.2.3 Composite Service Specifications, 133
 6.2.4 User/Domain Preferences, 134
 6.3 Web Service Composition with Branch Structures, 137
 6.3.1 Basic Ideas and Concepts, 137
 6.3.2 Service Composition Planner Supporting Branch Structures, 139
 6.3.3 Illustrating Examples, 148
 6.4 Web Service Composition with Parallel Structures, 153
 6.5 Demonstrations and Results, 155
 6.5.1 WSC Example in PHISP, 155
 6.5.2 Implementation of PHISP, 158
 6.6 Summary, 159

7. Scientific Workflows Enabling Web-Scale Collaboration

 7.1 Service-Oriented Infrastructure for Science, 162
 7.1.1 Service-Oriented Scientific Exploration, 162
 7.1.2 Case Study: The Cancer Grid (caGrid), 166
 7.2 Scientific Workflows in Service-Oriented Science, 167
 7.2.1 Scientific Workflow: Old Wine in New Bottle? 167
 7.2.2 caGrid Workflow Toolkit, 174
 7.2.3 Exemplary caGrid Workflows, 183
 7.3 Summary, 188
8. Network Analysis and Reuse of Scientific Workflows

8.1 Social Computing Meets Scientific Workflow, 190
 8.1.1 Social Network Services for Scientists, 191
 8.1.2 Related Research Work, 197

8.2 Network Analysis of myExperiment, 199
 8.2.1 Network Model at a Glance, 199
 8.2.2 Undirected Network, 200
 8.2.3 Directed Graph, 205
 8.2.4 Summary of Findings, 206

8.3 ServiceMap: Providing Map and GPS Assisting Service Composition in Bioinformatics, 207
 8.3.1 Motivation, 207
 8.3.2 ServiceMap Approach, 209
 8.3.3 What Do People Who Use These Services Also Use? 210
 8.3.4 What is an Operation Chain Between Services/Operations, 212
 8.3.5 An Empirical Study, 218

8.4 Summary, 219

9. Future Perspectives

9.1 Workflows in Hosting Platforms, 222
9.2 Workflows Empowered by Social Computing, 223
9.3 Workflows Meeting Big Data, 224
9.4 Emergency Workflow Management, 225

Abbreviations List

References

Index