MATHEMATICAL ECONOMICS

AKIRA TAKAYAMA

Purdue University

THE DRYDEN PRESS

Hinsdale, Illinois

Contents

INTRODUCTION A. Scope of the Book B. Outline of the Book CHAPTER 0 PRELIMINARIES A. Mathematical Preliminaries a. Some Basic Concepts and Notations b. R" and Linear Space c. Basis and Linear Functions d. Convex Sets e. A Little Topology B. Separation Theorems C. Activity Analysis and the General Production Set CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem 108	PREF/	ACE	ii
A. Scope of the Book B. Outline of the Book XXVIII CHAPTER 0 PRELIMINARIES A. Mathematical Preliminaries a. Some Basic Concepts and Notations b. R" and Linear Space c. Basis and Linear Functions d. Convex Sets e. A Little Topology B. Separation Theorems C. Activity Analysis and the General Production Set CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem 103 E. Some Extensions	Some	Frequently Used Notations	хi
B. Outline of the Book xviii CHAPTER 0 PRELIMINARIES A. Mathematical Preliminaries a. Some Basic Concepts and Notations b. R" and Linear Space c. Basis and Linear Functions d. Convex Sets e. A Little Topology B. Separation Theorems C. Activity Analysis and the General Production Set CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem 102 E. Some Extensions	INTRO	DDUCTION	
A. Mathematical Preliminaries a. Some Basic Concepts and Notations b. R" and Linear Space c. Basis and Linear Functions d. Convex Sets e. A Little Topology B. Separation Theorems C. Activity Analysis and the General Production Set CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem 102 E. Some Extensions		·	xv xvii
a. Some Basic Concepts and Notations b. R" and Linear Space c. Basis and Linear Functions d. Convex Sets e. A Little Topology B. Separation Theorems C. Activity Analysis and the General Production Set CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem 102 E. Some Extensions	CHAP	TER 0 PRELIMINARIES	1
b. R" and Linear Space c. Basis and Linear Functions d. Convex Sets e. A Little Topology B. Separation Theorems C. Activity Analysis and the General Production Set CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem 102 E. Some Extensions	A.	Mathematical Preliminaries	1
C. Activity Analysis and the General Production Set 45 CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING 55 A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem 102 E. Some Extensions		b. R" and Linear Spacec. Basis and Linear Functionsd. Convex Sets	1 5 10 16 19
CHAPTER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem E. Some Extensions	B.	Separation Theorems •	35
A. Introduction B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa Theorem E. Some Extensions 108	C.	Activity Analysis and the General Production Set	45
B. Concave Programming—Saddle-Point Characterization C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem E. Some Extensions	CHAP	TER 1 DEVELOPMENTS OF NONLINEAR PROGRAMMING	55
C. Differentiation and the Unconstrained Maximum Problem a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem E. Some Extensions 108	A.	Introduction	55
a. Differentiation b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem E. Some Extensions	B.	Concave Programming—Saddle-Point Characterization	62
b. Unconstrained Maximum D. The Quasi-Saddle-Point Characterization Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem E. Some Extensions	C.	Differentiation and the Unconstrained Maximum Problem	75
Appendix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa , Theorem 102 E. Some Extensions 108			75 82
E. Some Extensions 108		dix to Section D: A Further Note on the Arrow-Hurwicz-Uzawa	86
		,	
a. Quasi-Concave Programming • 109	E.	Some Extensions	108
		a. Quasi-Concave Programming •	109

CONTENTS

	b. The Vector Maximum Problemc. Quadratic Forms, Hessians, and Second-Order Conditions	112 117
F.	Some Applications	129
	a. Linear Programming	130 133
	b. Consumption Theoryc. Production Theory	136
	d. Activity Analysis	140
	e. Ricardo's Theory of Comparative Advantage and Mill's Problem	142
Appen	dix to Section F: Optimization and Comparative Statics—A Local Theory	151
	a. The Classical Theory of Optimization	151
	b. Comparative Statics	154
	c. The Second-Order Conditions and Comparative Statics	155
	d. An Example: Hicks-Slutsky Equation	156
	e. The Envelope Theorem	160
CHAP	TER 2 THE THEORY OF COMPETITIVE MARKETS	169
A.	Introduction	169
B.	Consumption Set and Preference Ordering	175
	a Consumption Set	175
	b. Quasi-Ordering and Preference Ordering	176
	c. Utility Function	179
i	d. The Convexity of Preference Ordering	181
C.	The Two Classical Propositions of Welfare Economics	185
Apper	ndix to Section C: Introduction to the Theory of the Core	204
	a. Introduction	204
	b. Some Basic Concepts	207
	c. Theorems of Debreu and Scarf	213
	d. Some Illustrations	218
	e. Some Remarks	224
D.	Demand Theory •	234
Apper	ndix to Section D: Various Concepts of Semicontinuity and the Maximum Theorem	249
	a. Various Concepts of Semicontinuity	249
	b. The Maximum Theorem	253
E.	The Existence of Competitive Equilibrium	255
	a. Historical Background	255
	b. McKenzie's Proof	265
Apper	ndix to Section E: On the Uniqueness of Competitive	280
		781

F.	Programming, Pareto Optimum, and the Existence of	
	Competitive Equilibria	285
CHAP	TER 3 THE STABILITY OF COMPETITIVE EQUILIBRIUM	295
А. В. С.	Introduction Elements of the Theory of Differential Equations The Stability of Competitive Equilibrium—The Historical	295 302
D.	Background A Proof of Global Stability for the Three-Commodity Case (with Gross Substitutability)—An Illustration of the Phase Diagram	313
E. F.	Technique A Proof of Global Stability with Gross Substitutability—The /7-commodity Case Some Remarks	321 325 331
	a. An Example of Gross Substitutability b. Scarfs Counterexample c. Consistency of Various Assumptions d. Nonnegative Prices	331 333 335 336
G.	The <i>Tatonnement</i> and the <i>Non-Tatonnement</i> Processes a. The Behavioral Background and the <i>Tatonnement</i> Process b. The <i>Tatonnement</i> and the <i>"Hon-Tatonnement</i> Processes	339 340 341
Н.	Liapunov's Second Method	347
CHAP [*]	TER 4 FROBENIUS THEOREMS, DOMINANT DIAGONAL MATRICES, AND APPLICATIONS	359
A. B. C. D.	Introduction Frobenius Theorems Dominant Diagonal Matrices Some Applications	359 367 380 391
	 a. Summary of Results b. Input-Output Analysis c. The Expenditure Lag Input-Output Analysis d. Multicountry Income Flows e. A Simple Dynamic Leontief Model f. Stability of Competitive Equilibrium g. Comparative Statics 	391 394 396 397 398 399 403
CHAP	TER 5 THE CALCULUS OF VARIATIONS AND THE OPTIMAL GROWTH OF AN AGGREGATE ECONOMY	410
A.	Elements of the Calculus of Variations and Its Applications	410
	a. Statement of the Problem	410

X CONTENTS

	b. Euler's Equationc. Solutions of Illustrative Problems	413 415
B.	Spaces of Functions and the Calculus of Variations	419
	a. Introduction	419
	b. Spaces of Functions and Optimization	' 421
	c. Euler's Condition and a Sufficiency Theorem	426
C. D.	A Digression: The Neo-Classical Aggregate Growth Model The Structure of the Optimal Growth Problem for an Aggregate	432
	Economy	444
	a. Introduction	444
	b. The Case of a Constant Capital:Output Ratioc. Nonlinear Production Function with Infinite Time Horizon	450 459
Appen	dix to Section D: A Discrete Time Model of One-Sector	
	Optimal Growth and Sensitivity Analysis	468
	a. Introduction	468
	b. Model	470
	c. The Optimal Attainable Paths	474
	d. Sensitivity Analysis: Brock's Theorem	480
CHAP ⁻	TER 6 MULTISECTOR MODELS OF ECONOMIC GROWTH	486
A.	The von Neumann Model	486
	a. Introduction	486
	b. Major Theorems	491
	c. Two Remarks	497
B.	The Dynamic Leontief Model	503
	a. Introduction	503
	b. The Output System	507
	c. The Price System	517
	d. Inequalities and Optimization Model (Solow)	522
	e. Morishima's Model of the Dynamic Leontief System	527
Appen	dix to Section B: Some Problems in the Dynamic Leontief	
	Model—The One-Industry Illustration	541
CHAP	TER 7 MULTISECTOR OPTIMAL GROWTH MODELS	559
A.	Turnpike Theorems	559
	a. Introduction	559
	b. The Basic Model and Optimality	561
	c. Free Disposability and the Condition for Optimality	563
	d. The Radner Turnpike Theorem	567
В.	Multisector Optimal Growth with Consumption	575
	a. Introduction >	575

	b. The Model ^	577
	c. Finite Horizon: Optimality and Competitiveness	580
	d. Optimal Stationary Program .	583
	e. O.S.P. and Eligibility	587
	f. Optimal Program for an Infinite Horizon Problem	. 594
CHAP*	PTER 8 DEVELOPMENTS OF OPTIMAL CONTROL THE	EORY
	AND ITS APPLICATIONS	600
A.	Pontryagin's Maximum Principle	600
	a. Optimal Control: A Simple Problem and the Maximum	
	Principle	600
	b. The Proof of a Simple Case	606
	c. Various Casesd. An Illustrative Problem: The Optimal Growth Problem	609 m 617
_		
B.	Some Applications	627
	a. Regional Allocation of Investment	627
	b. Optimal Growth with a Linear Objective Function	638
C.	Further Developments in Optimal Control Theory	646
	a. Constraint: $g[x(t), u(t), t \mid g \mid 0$	646
	b. Hestenes'Theorem	. 651
	c. A Sufficiency Theorem	660
D.	Two Illustrations: The Constraint $gix(t)$, $u(t)$, $tl > 0$ and	I the
	Use of the Control Parameter	667
	a. Optimal Growth Once Again	667
	b. Two Peak-Load Problems	671
E.	The Neo-Classical Theory of Investment and Adjustment	
	Costs—An Application of Optimal Control Theory	685
	a. Introduction	685
	b. The Case of No Adjustment Costs	688
	c. The Case with Adjustment Costs	697
	d. Some Remarks	703
INDE	EXES	721