PREDICTIVE MODELING APPLICATIONS IN ACTUARIAL SCIENCE

Volume II: Case Studies in Insurance

EDWARD W. FREES

University of Wisconsin-Madison

GLENN MEYERS

RICHARD A. DERRIG

OPAL Consulting LLC

Contents

	Contributors	<i>page</i> xi	
	Preface		
	Acknowledgments	xix	
1	Pure Premium Modeling Using Generalized Linear Models	1	
	Ernesto Schirmacher		
	1.1 Introduction	1	
	1.2 Data Characteristics	3	
	1.3 Exploratory Data Analysis	6	
	1.4 Frequency Modeling	12	
	1.5 Severity Modeling	23	
	1.6 Pure Premium	30	
	1.7 Validation	34	
	1.8 Conclusions	37	
	References	38	
2	Applying Generalized Linear Models to Insurance Data:		
	Frequency/Severity versus Pure Premium Modeling	39	
	Dan Tevet		
	2.1 Introduction	39	
	2.2 Comparing Model Forms	40	
	2.3 The Dataset and Model Forms	44	
	2.4 Results	47	
	Appendix 2.A Proof of Equivalence between Pure		
	Premium Model Forms	55	
	Conclusion	57	
	Appendix 2.B The Gini Index	- 57	
	References	58	

Contents

Gen	eralized Linear Models as Predictive Claim Models	60
Greg	Taylor and James Sullivan	
3.1	Review of Loss Reserving	60
3.2	Additional Notation	63
3.3	GLM Background	64
3.4	Advantages of GLMs	66
3.5	Diagnostics	68
3.6	Example	73
3.7	Conclusion	97
Refe	erences	98
Fran	neworks for General Insurance Ratemaking: Beyond the	
Gen	eralized Linear Model	100
Peng	g Shi and James Guszcza	
4.1	Introduction	100
4.2	Data	102
4.3	Univariate Ratemaking Framework	104
4.4	Multivariate Ratemaking Frameworks	113
4.5	Model Comparisons	122
4.6	Conclusion	123
Refe	erences	124
Usir	ng Multilevel Modeling for Group Health Insurance Ratemaking:	
A C	ase Study from the Egyptian Market	126
Mon	a S. A. Hammad and Galal A. H. Harby	
5.1	Motivation and Background	126
5.2	Data	130
5.3	Methods and Models	141
5.4	Results	144
5.5	Conclusions	146
Ack	nowledgments	147
App	endix	147
Refe	erences	157
Clus	stering in General Insurance Pricing	159
JiYa	10	
6.1	Introduction	159
6.2	Overview of Clustering	160
6.3	Dataset for Case Study	161
6.4	Clustering Methods	163
6.5	Exposure-Adjusted Hybrid (EAH) Clusering Method	168

Contents	ix
Contents	ix

	6.6	Results of Case Study	171
	6.7	Other Considerations	177
	6.8	Conclusions	178
	Refe	rences	179
7	App	lication of Two Unsupervised Learning Techniques to	
	Ques	stionable Claims: PRIDIT and Random Forest	180
	Louis	se A. Francis	
	7.1	Introduction	180
	7.2	Unsupervised Learning	181
	7.3	Simulated Automobile PIP Questionable Claims	
		Data and the Fraud Issue	182
	7.4	The Questionable Claims Dependent Variable	
		Problem	185
	7.5	The PRIDIT Method	185
	7.6	Processing the Questionable Claims Data for	
		PRIDIT Analysis	187
	7.7	Computing RIDITS and PRIDITS	187
	7.8	PRIDIT Results for Simulated PIP Questionable	
		Claims Data	188
	7.9	How Good Is the PRIDIT Score?	189
	7.10	Trees and Random Forests	192
	7.11	Unsupervised Learning with Random Forest	" 194
	7.12	Software for Random Forest Computation	195
	7.13	Some Findings from the Brockett et al. Study	201
	7.14	Random Forest Visualization via Multidimensional	
		Scaling	' 202
	7.15	Kohonen Neural Networks	204
		Summary	205
	Refe	rences	206
8		Predictive Distribution of Loss Reserve Estimates	
	over	a Finite Time Horizon	208
	Glen	n Meyers	
	8.1	Introduction	208
	8.2	The CAS Loss Reserve Database	210
	8.3	The Correlated Chain Ladder Model	212
	8.4	The Predictive Distribution of Future Estimates	213
	8.5	The Implications for Capital Management	216
	8.6	Summary and Conclusions	223 223
	References		

X Contents

9	Finite Mixture Model and Workers' Compensation Large-Loss		
	Regression Analysis	224	
	Luyang Fu and Xianfang Liu		
	9.1 Introduction	224	
	9.2 DGLM and FMM	230	
	9.3 Data	232	
	9.4 Traditional Distribution Analysis	234	
	9.5 Univariate and Correlation Analyses	239	
	9.6 Regression Analysis	246	
	9.7 Conclusions	257	
	References	258	
10	A Framework for Managing Claim Escalation Using		
	Predictive Modeling	261	
	Mohamad A. Hindawi and Claudine H. Modlin		
	10.1 Introduction	261	
	10.2 Loss Development Models	262	
	10.3 Additional Data for Triage Models	267	
	10.4 Factor Selection	271	
	10.5 Modeling Method	274	
	10.6 Conclusions	277	
	10.7 Further Research Opportunities	• 27	
	Appendix: Penalized Regression	280	
	References	289	
11	Predictive Modeling for Usage-Based Auto Insurance	290	
	Udi Makov and Jim Weiss		
	11.1 Introduction to Usage-Based Auto Insurance	290	
	11.2 Poisson Model for Usage-Based Auto Insurance	294	
	11.3 Classification Trees	301	
	11.4 Implementing UBI Models with a Traditional Rating Plan	305	
	11.5 Summary and Areas for Future Research	306	
	Acknowledgments	307	
	References	308	
	Index	309	