

Designing Economic Mechanisms

LEONID HURWICZ University of Minnesota

STANLEY REITER Northwestern' University

Contents

Acknowledgements			•	pageix	
Introduction				1	
1	Mechanisms and Mechanism Design				14
	1.0	Introd	uction		14
	1.1	Mecha	inisms and Design •		18
	1.2	Enviro	nments and Goal Functions		25
	1.3	Mecha	nisms: Message Exchange Processes and		
		Game	Forms		26
	1.4	Initial	Dispersion of Information and Privacy		
		Preserv	vation		29
			nism Design		30
	1.6	Mecha	nism Design Illustrated in a Walrasian Example		31
		1.6.1	An Edgeworth Box Economy		31
		1.6.2	The Walrasian Goal Function		32
		1.6.3	Mechanisms: The Competitive Mechanism		35
		1.6.4	Competitive Equilibrium Conditions		35
		1.6.5	The Competitive Mechanism is a Mechanism		36
		1.6.6	The Competitive Mechanism Illustrates Some		
			Concepts Used in Mechanism Design •		37
		1.6.7	Privacy Preservation in the Competitive		
			Mechanism		38
		1.6.8	Deriving a Mechanism (Not the Competitive		
			Mechanism) from a Covering for the Walrasian		
			Goal Function		40
		1.6.9	Informational Properties of the Two		
			Mechanisms		42
		1.6.10	The Rectangles Method Applied to the Walrasian		
			Goal Function - Informal		44

Contents

1.7	Introductory Discussion of Informational Efficiency		
	Concepts	46	
1.8	A National Forest	50	
Froi	n Goals to Means: Constructing Mechanisms	63	
	Phase One: Mechanism Construction	74	
2.1	2.1.1 Two Examples	74	
	2.1.2 Constructing a "Universal" Method of Designing	7-1	
	Informationally Efficient Mechanisms Realizing a		
	Given Goal Function	83	
	2.1.3 The Method of Rectangles (RM)	86	
22	Phase 2: Constructing Decentralized Mechanisms,	00	
2.2	from Parameter Indexed Product Structures: Transition		
	to Message-Indexed Product Structures	101	
	2.2.0 Introduction	101	
	2.2.1 Basic Concepts	101	
	2.2.2 The L-dot Example	102	
	2.2.3 More Examples	104	
	2.2.4 General Issues in Mechanism Construction	109	
	2.2.4 General issues in Mechanism Construction 2.2.5 Mechanism Construction for L-dot	105	
23	Smooth Transversal Construction for Partitions		
2.0	by the "Flagpole" Method	117	
	2.3.1 Flagpoles: General Principles	117	
	2.3.2 Flagpoles: Example 2 (Augmented Inner Product)	120	
	2.3.3 Flagpoles: A Walrasian Example	120	
	2.3.4 Unique Solvability Implies Partition	129	
24	Analytic Aspects	130	
	2.4.1 Phase Two via Condensation. General Principles	131	
	2.4.2 The Mount-Reiter Condensation Theorem		
	(Sufficiency)	136	
	2.4.3 Walrasian Mechanism Construction	140	
	2.4.4 Phase Two of Mechanism Design via Condensation		
	for the Augmented Two-Dimensional Inner		
	Product	149	
2.5	Overlaps	154	
	2.5.0 Constructing a Mechanism When the		
	Parameter-Indexed Product Structure Is Not a		
	Partition: An Example	154	
Ap	opendix		
-	6 Informational Efficiency		
	2.6.1 Main Results •	165	
	2.6.2 The Maximally of Reflexive RM-Coverings	166	
	2.6.3 Informational Efficiency: General Considerations	168	

	2.6.4 A Comment on Informational Efficiency Concepts 2.6.5 Minimal Informational Size Is Achievable by an rRM	171	
	Mechanism	172	
	2.6.6 Two rRM Coverings of Different Informational Size		
	for the Same Goal Function: An Example	175	
	Appendix	180	
3	Designing Informationally Efficient Mechanisms Using the		
0	Language of Sets	182	
	3.1 Introduction	182	
	3.2 Mechanism Design	183	
	3.2.1 Decentralization	184	
	3.3 Mechanisms and Coverings	186	
	3.4 A Systematic Process for Constructing an rRM Covering	188	
	3.4.1 OrRM: An Algorithm for Constructing an rRM		
	Covering of a Finite Parameter Space That Is Minimal		
	in the Class of Rectangular, F-Contour Contained		
	Coverings	197	
	3.5 Constructing a Mechanism from a Covering by the		
	Transversals Method (TM)	220	
	3.6 Coverings and Partitions	230	
	3.7 Informational Efficiency	244	
	3.7.1 Introduction	244	
	3.7.2 Observational Efficiency	245	
	3.7.3 The Maximality of rRM-Coverings	246	
	3.7.4 Informational Size and Coarseness	250	
	3.8 Section 1.8 Revisited: A Graphical Presentation	263	
	3.9 Strategic Behavior	274	
	3.9.1 Dominant Strategy Implementation	274	
	3.9.2 Designing Informationally Efficient		
	Nash-Implementing Mechanisms	279	
	Appendix: Characterizations of Partitions		
4	Revelation Mechanisms •	296	
	4.1 Introduction	296	
	4.1.1 Computational Complexity of Functions	299	
	4.1.2 Separator Sets and Quotients	303	
	4.1.3 Algebraic Conditions	306	
	4.1.4 Privacy-Preserving Mechanisms	307	
	4.2 Initial Set-Theoretic Constructions	310	
	4.2.1 Encoded and Essential Revelation Mechanisms	310	
	4.2.2 F-Equivalence and Encoded Revelation		
	Mechanisms	310	

4.3	The Topological Case		313
	4.3.1 Differential Separability		315
	4.3.2 The Number of Variables on which F Really		
	Depends •	/	316
	4.3.3 Rank Conditions and Construction of an Essential		
	Revelation Mechanism for F		317
4.4	Proofs and Examples		322
	4.4.1 Leontief and Abelson Theorem		322
	4.4.2 Leontief's Theorem		324
	4.4.3 An Example of the Coordinate Construction .		329
	4.4.4 Proof of Theorem 4.4.6		331
References			335
Index	,		341