

Stochastic Programming Approaches for Strategic Logistics Problems

Stochastische programmerings-benaderingen voor strategische logistieke problemen

Thesis

TO OBTAIN THE DEGREE OF DOCTOR FROM THE ERASMUS UNIVERSITY ROTTERDAM ON THE AUTHORITY OF THE RECTOR MAGNIFICUS PROF.DR.IR. J.H. VAN BEMMEL AND ACCORDING TO THE DECISION OF THE DOCTORATE BOARD

THE PUBLIC DEFENSE SHALL BE HELD ON THURSDAY JUNE 12, 2003 AT 16.00 HRS

by

Ovidiu Lucian Listen

born at Huedin, Romania

Contents

1	Inti	roduction	1
	1.1	Strategic planning under uncertainty in logistics	.3
	1.2	Optimization under Uncertainty.	.6
	1.3	Stochastic Programming	
		1.3.1 Two-stage stochastic linear programs with recourse	10
		1.3.2 Some properties of two-stage stochastic programming	
		models with recourse.	.12
		1.3.3 Multi-stage stochastic programs with recourse	.13
		1.3.4 Computational issues and challenges	.14
	1.4	Research goals and methodology.	.16
	1.5	Outline of the thesis	.19
2	Dis	tribution Management for Reverse Logistics	25
4	2.1	The Deverse Logistics context	23 25
	2.1	Product recovery networks issues	29
	2.2	Network design for product recovery	32
	2.5 2.4	Facility location under uncertainty	36
	2,4		.50
3	Sar	nd Recycling: An Illustrative Case Study	41
	3.1	Recycling of sieved sand: the case study	.42
	3.2	Modeling issues.	.43
		3.2.1 The underlying model	.46
		3.2.2 Data and uncertainty.	.49
	3.3	The stochastic programming approach	.51
		3.3.1 Locational uncertainty of demand •	.52

	3.4 3.5	3.3.2 Additional uncertainty of supply. Implementation. Computational results. 2.5.1	.54 .57 .59
		3.5.1 High supply case. 3.5.2 Low supply case. 3.5.3 Three-stage approach.	.59 .63 .64
	3.6	Conclusions.	.71
	AG	Generic Stochastic Model for Recovery Network Design	73
	4.1	A generic supply-and-return network model	.75
	4.2	The decomposition approach	.80
		4.2.1 Decomposing the linear relaxation of the model	.81
		4.2.2 The integer L-shaped based algorithm	.84
	4.3	Implementation issues	.86
	4.4	Computational results	.88
		4.4.1 Computational efficiency.	.92
		4.4.2 Impact of uncertainty	.95
	4.5	Extensions	.101
	4.6	Summary and conclusions	.103
	Con	clusions of Part I	105
II	Airl	ine Fleet Planning for Dynamic Capacity Management	109
5	Dyr	namic Capacity Management: A New Aviation Trend	111
	5.1	Preliminaries	.I11
	5.2	Arguments from current practice	.113
	5.3	The need for DCM within the airline planning process	.115
	5.4	Decision support methods for DCM.	.119
6	A S	scenario Aggregation based Approach	125
	6.1	Related literature review.	.126
	6.2	The fleet composition problem	.129
	62	Madalla lana	101

6.3	Modeling issues	.131
6.4	The underlying deterministic model	.133
6.5	A robust fleet composition	.135
6.6	The scenario aggregation based approach	.137

		6.6.1 The scenario aggregation algorithm	137		
		6.6.2 A rounding procedure.	140		
	6.7	Scenario generation	141		
	6.8	Fleet performance evaluation	144		
	6.9	Implementation issues	146		
	6.10	Case study results.	150		
		6.10.1 A small case and method validation	151		
		6.10.2 A case study on a large network.	154		
	6.11	Concluding remarks.	157		
	Appendix		158		
	Con	clusions of Part II 1	161		
7	Con	acluding remarks	163		
Bibliography					
Sa	Samenvatting (Summary in Dutch)				
Curriculum Vitae					