Nonparametric Regression and Generalized Linear Models

A ROUGHNESS PENALTY APPROACH

P.J. GREEN

and

B.W. SILVERMAN

School of Mathematics University of Bristol UK

CHAPMAN & HALL/CRC

Boca Raton London New York Washington, D.C.

Contents

Preface			xi	
1	Introduction			1
	1.1	Appro	aches to regression	1
		1.1.1	Linear regression	1
		1.1.2	Polynomial regression	2
	1.2	Rough	nness penalties	2
		1.2.1	The aims of curve fitting	2
		1.2.2	Quantifying the roughness of a curve	4
		1.2.3	Penalized least squares regression	5
	1.3	Exten	sions of the roughness penalty approach	7
	1.4	Comp	Computing the estimates	
	1.5	Furthe	er reading	9
2	Interpolating and smoothing splines			11
	2.1	_	splines	11
		2.1.1	What is a cubic spline?	11
		2.1.2	The value-second derivative representation	12
	2.2	Interp	olating splines	13
		2.2.1	Constructing the interpolating natural cubic spline	15
		2.2.2	Optimality properties of the natural cubic spline	
			interpolant	16
	2.3	3 Smoothing splines		17
		2.3.1	Restricting the class of functions to be considered	18
		2.3.2	Existence and uniqueness of the minimizing	
			spline curve	18
		2.3.3	The Reinsch algorithm	19
		2.3.4	Some concluding remarks	21
	2.4	Plottii	ng a natural cubic spline	22

	2.4.1	Constructing a cubic given values and second		
		derivatives at the ends of an interval	22	
	2.4.2	Plotting the entire cubic spline	23	
2.5	Some	background technical properties	24	
	2.5.1	The key property for g to be a natural cubic spline	24	
	2.5.2	Expressions for the roughness penalty	24	
2.6	Band	matrix manipulations	25	
	2.6.1	The Cholesky decomposition	26	
	2.6.2	Solving linear equations	26	
One	e-dimen	sional case: further topics	29	
3.1	Choos	sing the smoothing parameter	29	
3.2		-validation -	3©,	
	3.2.1	Efficient calculation of the cross-validation score	31	
		Finding the diagonal elements of the hat matrix	33	
3.3	Gener	alized cross-validation	35	
	3.3.1	The basic idea	35	
	3.3.2	Computational aspects	35	
	3.3.3	Leverage values	36	
	3.3.4	Degrees of freedom	\$7	
3.4	Estimating the residual variance .			
	3.4.1	C	38	
	3.4.2	A	39	
	3.4.3	1	40 40	
3.5	\mathcal{E}			
	3.5.1	Basic properties of the weighted formulation	41	
	3.5.2		41	
		Cross-validation for weighted smoothing	42	
	3.5.4	U 1	43	
3.6	The b	asis functions approach	44	
	3.6.1	Details of the calculations	46	
3.7		quivalent kernel	47	
	3.7.1		47	
	3.7.2	Approximating the weight function	47	
3.8		ilosophical basis of roughness penalties	49	
	3.8.1	Penalized likelihood	SO	
	3.8.2		51	
	3.8.3		51	
	3.8.4		54	
	3.8.5	Bayesian inference for functional of the curve	55	
3.9		arametric Bayesian calibration	57	
	3.9.1	The monotonicity constraint	58	

CONTENTS vii

		3.9.2	Accounting for the error in the prediction		
			observation	59	
		3.9.3	Considerations of efficiency	59	
		3.9.4	An application in forensic odontology	60	
4	Partial splines				
	4.1	Introd		63	
	4.2		emiparametric formulation	64	
	4.3			65	
		4.3.1	Incidence matrices	65	
			Characterizing the minimum	65	
		4.3.3	Uniqueness of the solution	66	
			Finding the solution in practice	68	
			A direct method	69	
	4.4		-validation for partial spline models	7 0	
	4.5		rketing example	71	
		4.5.1	T T T T T T T T T T T T T T T T T T T	72	
		4.5.2	r · · · · · · · · · · · · · · · · · · ·	73	
	4.6		cation to agricultural field trials	75	
		4.6.1	8 1 7 1	75	
		4.6.2	8 4 4 5	77	
	4.7		elation between weather and electricity sales	79	
			The observed data and the model assumed	79	
		4.7.2	8	81 83	
	4.8	Additive models			
	4.9		ternative approach to partial spline fitting	85	
		4.9.1	1 &	85	
		4.9.2	11 8	86	
		4.9.3	I	0.4	
			method	86	
5		Generalized linear models			
	5.1		uction	89	
		5.1.1	- , 8 -8	89	
		5.1.2	Extending the model	90	
	5.2		ralized linear models	91	
		5.2.1	1	91	
		5.2.2		93	
		5.2.3		94	
		5.2.4		95	
			Inference in GLMs	95	
	53	A fire	t look at nonDarametric GLMs	98	

Vtll CONTENTS

		5.3.1 Relaxing parametric assumptions	98	
		5.3.2 Penalizing the log-likelihood	98	
		5.3.3 Finding the solution by Fisher scoring	99	
		5.3.4 Application: estimating actuarial death rates	101	
	5.4	Semiparametric generalized linear models	104	
		5.4.1 Maximum penalized likelihood estimation	105	
		5.4.2 Finding maximum penalized likelihoodestimates		
		by Fisher scoring	105	
		5.4.3 Cross-validation for GLMs	107	
		5.4.4 Inference in semiparametric GLMs	110	
5.5 Application: tumour prevalence data		Application: tumour prevalence data	111	
	5.6	Generalized additive models 1		
6	Exte	ending the model	115	
	6.1	Introduction	115	
	6.2	The estimation of branching curves	115	
		6.2.1 An experiment on sunflowers	116	
		6.2.2 The estimation method	116	
		6.2.3 Some results	118	
	6.3	Correlated responses and non-diagonal weights		
	6.4	Nonparametric link functions		
		6.4.1 Application to the tumour prevalence data	124	
	6.5	Composite likelihood function regression models	125	
	6.6	A varying coefficient model with censoring 12		
	6.7	Nonparametric quantile regression 1		
		6.7.1 The LMS method	129	
		6.7.2 Estimating the curves	130	
	6.8	Quasi-likelihood	134	
7	Thi	in plate splines		
	7.1	Introduction 1		
	7.2	Basic definitions and properties	137	
		7.2.1 Quantifying the smoothness of a surface	138	
	7.3	Natural cubic splines revisited		
	7.4	Definition of thin plate splines		
	7.5	Interpolation	143	
		7.5.1 Constructing the interpolant	143	
		7.5.2 An optimality property	144	
		7.5.3 An example	144	
	7.6	Smoothing	147	
		7.6.1 Constructing the thin plate spline smoother	147	
		7.6.2 An example	148	

CONTENTS ix

		7.6.3	Non-singularity of the defining linear system	148
	7.7	Finite	window thin plate splines	150
		7.7.1	Formulation of the finite window problem	150
		7.7.2	An example of finite window interpolation and	
			smoothing	151
		7.7.3	Some mathematical details	153
	7.8	7.8 Tensor product splines		155
		7.8.1	Constructing tensor products of one-dimensional	
			families	155
		7.8.2	A basis function approach to finite window	
			roughness penalties	156
	7.9	Highe	er order roughness functionals	159
		7.9.1	Higher order thin plate splines	160
8	Ava	ilable s	oftware	163
	8.1	Routines within the S language		163
		8.1.1	The S routine smooth, spline	163
		8.1.2	The new S modelling functions	164
	8.2	The G	SCVPACK routines	165
		8.2.1	Details of the algorithm	166
R	References			169
A۱	Author index			175
Sι	Subject index			