ECOLOGY,
IMPACT ASSESSMENT,
AND ENVIRONMENTAL
PLANNING

WALTER E. WESTMAN

University of California, Los Angeles

CONTENTS

PART I. INTRODUCTION

1.	Ecological Impact Assessment as a Discipline	3
	Ecological Impact Assessment Defined	4
	Rationales for Assessing Ecological Impact	5
	Integrated Impact Assessment	6
	Impact Assessment and Environmental Planning	8
	The Phases of Ecological Impact Assessment	10
	٠.	
	RT II. ENVIRONMENTAL LAW, PUBLIC POLICY, D DECISION MAKING	
2.	Environmental Law: Planning Approaches and Ecological Constraints	29
	Environmental Impact Assessment	30
	Air Quality Management	40
	Water Quality Management	5.3
	Toxic Substances Control	58
	Land Use Planning and Control	63
	Biological Conservation	73
	Noise Control	81
3.	Environmental Decision Making	91
	Fashioning Alternatives	9.1
	Estimating Risk	97
	Finding Optimum Solutions	104
	Involving the Public	113
	Resolving Conflict	119

3

ix

x Contents

PART III. SUMMARIZING AND EVALUATING IMPACTS

4.	Quantitative Approaches	131
	Impact Identification Techniques	131
	Checklists	131
	Matrix Methods	133
	Networks	142
	Impact Evaluation Techniques	148
	Approaches that Aggregate Public Values	149
	Approaches that Disaggregate Public Values	155
5.	Economic Approaches	168
	Social Theory Underlying Economic Evaluation	168
	Evaluation Using Market Prices	172
	Evaluation Using Shadow Prices for Nonmarketed Resources	178
	Limitations of Economic Evaluation Methods	188
	RT IV. PREDICTING IMPACTS: THE YSICAL ENVIRONMENT	
6.	Land	201
	Landscape Characteristics as Indicators of Land Suitābility and Vulnerability	201
	Landscape Characteristics as Indicators of Landscape	
	Processes	219
	Mapping Landscape Characteristics	227
	Evaluating Alternative Land Use Plans	252
7.	Air and Water	269
	Air	269
	Calculating Pollutant Emissions	269
	Predicting Ambient Concentrations	272
	Comparing Ambient Concentrations to Standards	280
	Long-distance Transport and Transformation of Pollutants	282
	Predicting Ecological Responses to Air Pollutants	284
	Water	290
	Categorization of Pollutants	290
	Pollution Dispersion	293
	Water Quantity	314
	Use of Computer Data Banks for Air and Water Pollution Studies	319

8. ·	Structure and Function of Biological Communities	329
	Alternative Goals for Management of Ecosystems	329
	Ecosystem Processes and Impact Assessment	332
	Energy Fixation and Flow	332
	Nutrient Assimilation and Release	349
	Population Dynamics and Genetic Diversity	356
9.	Ecotoxicology: Assessing Impacts of Pollutants on Biota	364
	Ecotoxicology	365
	Attributes for Predicting Species' Response to Pollution Stress	371
	Organisms as Indicators of Environmental Conditions	382
	Pollution Effects: Ecosystem-Level Approaches	390
	Monitoring: Some Technological Advances	397
10.	Sampling and Analysis of Ecological Data	409
	Models of Community Structure	409
	Relating Species Distributions to Environmental Factors	416
	Data Collection	417
	Data Analysis	426
11.	Species and Landscape Diversity	444
	Species Richness and Species-Area Curves	444
	Heterogeneity and Equitability	447
	Preservation of Diversity: Design of Nature Reserves	458
	Landscape Ecology	467
12.	Succession and Resilience of Ecosystems	480
	Successional Concepts	480
	Ecosystem Changes in Structure'and Function during	
	Succession	485
	Predicting Successional Trends	488
	Retrogression	497
	Ecosystem Inertia and Resilience	499
	INDEX	524

Contents

хi