Klaus Neumann Christoph Schwindt Jiirgen Zimmermann

Project Scheduling with Time Windows and Scarce Resources

Temporal and Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions

Contents

Tem	poral 1	Project Scheduling	1							
1.1	Minimum and maximum time lags									
1.2	Activi	Activity-on-node project networks								
1.3	Tempo	Temporal project scheduling computations								
1.4	Orders	in the set of activities	.15							
Descurse Constrained Desired Scheduling Minimization										
of P	ource— roiect	Duration	21							
2.1	Formu	lation of the problem	24							
2.2	Cycle	structures in activity-on-node project networks	26							
2.3	Properties of the feasible region									
2.0	231	Strict orders and order polyhedra	30							
	2.3.2	Forbidden sets and resolution of resource conflicts	33							
2.4	Differe	nt types of shifts and sets of schedules	38							
2:5	Branci	h-and-bound and truncated branch-and-bound methods	45							
	2.5.1	Enumeration scheme	45							
	2.5.2	Preprocessing	53							
	2.5.3	Lower bounds	59							
	2.5.4	Branch-and-bound algorithm	62							
	2.5.5	Truncated branch-and-bound methods	.65							
	2.5.6	Alternative enumeration schemes	.69							
	2.5.7	Alternative preprocessing and constraint propagation .	71							
	2.5.8	Alternative lower bounds.	.74							
2.6	Priorit	y-rule methods	.80							
	2.6.1	Direct method	.81							
	2.6.2	Decomposition methods	.82							
	2.6.3	Priority rules	.83							
	2.6.4	Serial generation scheme	.84							
	2.6.5	Parallel generation scheme	.90							
2.7	Schedule-improvement procedures.									
	2.7.1"" Genetic algorithm									
	2.7.2	Tabu search	.97							
2.8	Experimental performance analysis									
	2.8.1	Random generation of projects	.101							
	2.8.2	Computational experience.	.105							

2.9	Application to make-to-order production in manufacturing in-				
2.10	Regula	r objective functions different from project duration	117		
2.10	Calend	larization	120		
2.12	Project	t scheduling with cumulative resources	127		
2.12	Project	t scheduling with sequence-dependent changeover times	136		
2.15	Multi-	mode project scheduling problems	146		
2.1 1	2.14.1	Problem formulation and basic properties	147		
	2.14.2	Solution methods	153		
2.15	Applic	ation to batch production in process industries	.163		
	2.15.1	Case study.	.164		
	2.15.2	Project scheduling model	.168		
	2.15.3	Enumeration scheme	.171		
Reso	ource-	Constrained Project Scheduling — Minimization	n 1 <i>75</i>		
01 G	eneral	Objective Functions	175		
3.1	Differe	int objective functions.	105		
3.2	Additi	onal types of shifts and sets of schedules.	.185		
3.3		ication of objective functions.	.190		
	3.3.1	Separable and resource-utilization dependent	107		
	222	Objective functions.	.197		
	3.3.2	Class 1 of regular objective functions.	.199		
	3.3.3	Class 2 of antiregular objective functions	.200		
	5.5.4 2.2.5	Class 4 of binary monotone objective functions	201		
	226	Class 5 of quesiconceve objective functions	202		
	5.5.0 2 2 7	Class 5 of quasiconcave objective functions	205		
	3.3.7	Class 7 of locally guasiconcave objective functions	205		
31	5.5.0 Timo (class 7 of locally quasicolicave objective functions	210		
3.4	Palava	ation based approach for function classes 1 to 5	214		
5.5	3 5 1	General enumeration scheme	223		
	3.5.1	Branch and bound algorithm for the net present value	.223		
	5.5.2	problem	226		
	353	Branch-and-bound algorithm for the	.220		
	5.5.5	earliness-tardiness problem	243		
3.6	Tree-b	ased approach for function classes 6 and 7	246		
	3.6.1	General enumeration scheme	247		
	3.6.2	Branch-and-bound algorithms for resource investment.			
		resource levelling, and resource renting problems	254		
	3.6.3	Experimental performance analysis	.264		
3.7	Priorit	y-rule methods	.265		
	3.7.1	Time-constrained project scheduling	266		
	3.7.2	Resource-constrained project scheduling	277		
	3.7.3	Experimental performance analysis	.286		
		-			

Contents

3.8	Schedule improvement procedures		. 288
	3.8.1	Neighborhoods for project scheduling problems	. 288
	3.8.2	A tabu search procedure.	. 297
Refere		301	
List of	ols	315	
Three–	-Field	Classification for Resource—Constrained	
Pro	cheduling	321	
Index			325