Stefan Baumgartner

Ambivalent Joint Production and the Natural Environment

An Economic and Thermodynamic Analysis

With 25 Figures and 11 Tables

Physica-Verlag

A Springer-Verlag Company,

Contents

	Prefa	ace.		.v
1	Introduction 1			
	1.1 The issue under study.		.1	
		1.1.1	Joint production.	.1
		1.1.2	Joint products and the natural environment.	.2
		1.1.3	Ambivalence of joint products.	.2
		1.1.4	Dynamic economy-environment interactions	.3
		1.1.5	The state of knowledge and ignorance.	5
	1.2	Scope	and method of analysis	.6
		1.2.1	Defining the basic terms	.6
		1.2.2	Scope of analysis.	.8
		1.2.3	Aim of this work	.8
		1.2.4	Environmental Economics and Ecological Economics .	9
		1.2.5	An interdisciplinary approach	.10
		1.2.6	Analytical features	.11
	1.3	Previe	ew of the argument.	.16
2	Joi	nt pro	duction and the natural environment	23
	2.1	The r	nacro-dimension of joint production	.23
	2.2	The c	ogeneration of electricity and heat: Ambivalence of joint	
		produ	cts	.24
	2.3	The i	mpact of joint products over time	.30
		2.3.1	Flow pollution vs. stock pollution	.30
		2.3.2	The emission of carbon dioxide, methane and nitrous	
			oxide: The anthropogenic greenhouse effect	.32
		2.3.3	The emission of sulfur dioxide: Acid rain	.35
		2.3.4	The impact of joint products over time: Conclusion .	40
	2.4	Sulfu	ric acid: Joint products as the origin of structural change	40
	2.5	Conc	lusion	.43
3	Thermodynamics 4			45
	3.1	Pheno	omenological thermodynamics	.46
		3.1.1	Thermodynamic systems	.46
		3.1.2	Conservation of energy	.49
		3.1.3	Conservation of matter	.51

		3.1.4 Degradation of energy.	51
	3.2 Statistical mechanics		
		3.2.1 Boltzmann's notion of entropy	54
		3.2.2 Phenomenological versus statistical view.	56
	3.3	Time-irreversibility.	59
		3.3.1 Reversible time	59
		3.3.2 Time-irreversibility in isolated systems: heat death	59
		3.3.3 Time-irreversibility in open systems: complexity	
		through self-organization.	60
		3.3.4 Thermodynamics and time-irreversibility	63
	3.4	Conclusion.	64
	All production is joint production		
	4.1	The fundamental factors of production	67
	4.2	The thermodynamic view of production	69
		4.2.1 Production as a transformation of energy and matter .	69
		4.2.2 First and Second Law constraints	71
		4.2.3 A 'toy model' of industrial production processes	73
		4.2.4 Joint production as a consequence of the First Law	77
		4.2.5 Joint production as a consequence of the Second Law	78
		4.2.6 Some comments on the generality of the employed toy	~~
	4.0	model	.80
	4.3	Implications and applications of the model	81
		4.3.1 Relationship among the joint outputs	82
		4.3.2 Relationship among the inputs	.83
		4.5.5 Substitutability vs. complementarity of inputs	.84
		4.5.4 Relationship between inputs and outputs and merino-	05
	11	Conclusion	.0J 86
	4.4		.80
	-		
П	Т	he Analysis of Joint Production in the	~ ~
	H	istory of Economic Thought 8	39
5	The	classical position and its early critics	94
	5.1	Adam Smith: The case of joint production requires special	
		patterns of explanation	94
	5.2	John Stuart Mill: Demand and supply.	98
	5.3	Conclusion.	00
,			
0		abandonment of classical theory	02
	0.1	Johann riemrich von Enninen: Ambivalent joint production . I	102
	0.2 Kall Marx: Joint products as Waste		
	0.5	for joint outputs	07
			107

	6.4	Conclusion	.112
	Neo anal	classical theory from partial to general equilibrium	114
	71	Alfred Marshall: Substitution in supply	114
	7.2	Heinrich von Stackelberg: Analogies to the case of single pro-	
		duction	.120
	7.3	John von Neumann: Duality of process intensities and prices	130
	7.4	Arrow/Debreu: The production set	.133
	7.5	Welfare analysis: Harmful joint outputs	.136
	7.6	Conclusion	.140
	Арр	oendix	.141
	7A	Von Neumann's model of linear production.	.141
	The	role of joint production for the construction of	
	ecor	nomic theory	143
	8.1	Summary of chapters 5 to 7.	.143
	8.2	Critical appraisal	.146
		8.2.1 Empirical relevance.	.146
		8.2.2 Analytical treatment	.146
	8.3	Interpretation	.147
		nomic theory	147
		832 The structuralist research program	150
	8.4	Conclusion	.153
Π	I	The Economics of Ambivalent Joint	
]	Production	155
9	The	e concept of joint production	157
	9.1	The notion of joint production in the literature	.158
		9.1.1 Joint production in the economic literature.	.158
		9.1.2 Joint production in the business administration	
		literature.	.162
	9.2	A formal definition of joint production	.165
		9.2.1 Definition	.165
		9.2.2 Properties of the definition.	.167
	9.3	Subjective elements in the description of production.	.170
		9.3.1 The observer's interest: Is really all production joint	
		production?	.171
		9.3.2 The valuation by economic agents: Why is the produc-	175
		tion process carried out?	.175

		9.3.3	Conceptual separation between the description of pro- duction and the valuation of outputs by economic	
			agents	176
	94	Aspect	s of joint production	177
	2.1	941	Fixed and flexible joint production	177
		942	Ambivalent joint production	181
	9.5	Conclu	ision	.184
10	Am	bivalen	nce of joint products	185
	10.1	A mod	lel with joint externalities.	.187
		10.1.1	Specification of the model.	.187
		10.1.2	The transformation curve.	.191
		10.1.3	Optimal allocation and shadow prices	.195
		10.1.4	Ambivalence of the intermediate product (I)	.197
	10.2	Solutio	on of the model	.200
		10.2.1	Scenario 1: No emissions	.201
		10.2.2	Scenario 2: Final emissions	.204
		10.2.3	Scenario 3: Joint emissions	.208
	10.3	Summ	ary of model results.	.213
		10.3.1	Optimal <i>a</i>	.213
		10.3.2	Ambivalence of the intermediate product (II)	.214
	10.4	Enviro	onmental policy with joint emissions.	.215
		10.4.1	Regulation under complete knowledge	.217
		10.4.2	Incomplete knowledge and learning by doing	.217
	10.5	Conclu	usion	.219
		10.5.1	What determines the value of joint outputs?	<u>.</u> 219
		10.5.2	The implication for environmental policy	.220
		10.5.3	The implication for economic modeling	.221
	Apr	oendix		221
	10A	Deterr	nining equation for a	.221
	10B	Solutio	on for the three scenarios	223
	-	10B.1	Solution in scenario 1.	223
		10B.2	Solution in scenario 2	225
		10B.3	Solution in scenario 3.	.227
11	Joir	nt prod	lucts and irreversibility	231
	11.1	Notio	ns of irreversibility in production theory	.233
		11.1.1	Thermodynamic irreversibility	.233
		11.1.2	Koopmans'notion of irreversibility	.233
		11.1.3	Debreu's notion of irreversibility	234
		11.1.4	Dated goods vs. complete representations	.238
	11.2	Produ	ction and capital accumulation	. 240
		11.2.1	Reversible capital theory.	
		11.2.2	Joint products and irreversible capital accumulation .	248

Contents

	11.3 11.4	Economic and thermodynamic views on irreversibility Conclusion	252 254
12	Non	-convexity of the production set	255
	12.1	Detrimental joint products and negative externalities	.257
		12.1.1 Competing uses of the environment.	257
		12.1.2 A simple model of a two-sector-economy	258
	12.2	Baumol type externalities	.260
		12.2.1 The argument of Baumol and Bradford	.260
		12.2.2 Formal analysis of the transformation curve	263
		12.2.3 Generalization to <i>n</i> production processes	269
	12.3	Different types of externalities	269
		12.3.1 Different types of negative externality	270
		12.3.2 Two examples	.273
		12.3.3 Different types of non-convexity	278
		12.3.4 Negative externalities and non-convexities: summary .	280
	12.4	The consequences of a non-convex production possibility set . 12.4.1 Non-convexity at the level of individual firms and at	281
		the level of the economy	281
		12.4.2 Existence of a general competitive equilibrium	282
		12.4.3 First welfare theorem	.283
		12.4.4 Second welfare theorem	.283
		12.4.5 Second order conditions: Welfare maximum or mini-	
	12.5	mum?	285 287
	Ann	pendix	288
	12A	Properties of the inverse production functions	.288
13	Am pers	bivalent joint production: Putting the issues in spective	290
Re	efere	nces	295
Li	List of Figures		
Li	List of Tables		