Numerical Methods in Finance

A MATLAB-Based Introduction

0

Paolo Brandimarte

A Wiley-Interscience Publication JOHN WILEY & SONS, INC.

Contents

Preface

хт

Part I Background

1	Fina	ncial p	roblems and numerical methods	3
	1.1	MAT	LAB environment	4
		1.1.1	Why MATLAB?	5
	1.2	Fixed immu	-income securities: analysis and portfolio nization	6
		1.2.1	Basic valuation of fixed-income securities	7
		1.2.2	Interest rate sensitivity and bond portfolio immunization	14
		1.2.3	MATLAB functions to deal with fixed- income securities	17
		1.2.4	Critique	26
	1.3	Portfe	olio optimization	27
		1.3.1	Basics of mean-variance portfolio optimization	30
		1.3.2	<i>MATLAB functions to deal with mean-</i> variance portfolio optimization	32

vii

y

	1.3.3	Critique	39
1.4	Derive	atives	41
	I.4.I	Modeling the dynamics of asset prices	46
	1-4-2	Black-Scholes model	52
	1.4.3	Black-Scholes model in MATLAB	54
	1.4.4	Pricing American options by binomial	
		lattices	57
	1-4-5	Option pricing by Monte Carlo simulation	65
1.5	Value	-at-risk	66
Sl.1	Stoche	astic differential equations and Ito's lemma	70
	Refere	ences	72

Part II Numerical Methods

2	Basi	ics of ni	umerical analysis	77
	2.1	Natur	e of numerical computation	78
		2.1.1	Working with a finite precision arithmetic	78
		2.1.2	Number representation, rounding, and	
			tmncation	82
		2.1.3	Error propagation and instability	84
		2.1.4	Order of convergence and computational	
			complexity	85
	2.2	Solvin	g systems of linear equations	86
		2.2.1	Condition number for a matrix	87
		2.2.2	Direct methods for solving systems of	
			linear equations	90
		2.2.3	Tridiagonal matrices	94
		2.2.4	Iterative methods for solving systems of	
			linear equations	95
	2.3	Funct	tion approximation and interpolation	104
	2.4	Solvin	g nonlinear equations	111
		2-4-1	Bisection method	112
		2-4-2	Newton's method	113
		2-4-3	Solving nonlinear equations in MATLAB	114
	2.5	Nume	rical integration	117
		Refere	ences	121
		-		

3 Optimization methods

123

3.1	Classi	fication of optimization problems	123
	3.1.1	Finite-vs. infinite-dimensional problems	124
	3.1.2	Unconstrained vs. constrained problems	128
	3.1.3	Convex vs. nonconvex problems	129
	3.1.4	Linear vs. nonlinear problems	130
	3.1.5	Continuous vs. discrete problems	132
	3.1.6	Deterministic vs. stochastic problems	136
3.2	Numer	rical methods for unconstrained	
	optim	ization	141
	3.2.1	Steepest descent method	142
	3.2.2	The subgradient method	143
	3.2.3	Newton and the trust region methods	143
	3.2.4	No-derivatives algorithms: quasi-Newton	
		method and simplex search	144
	3.2.5	Unconstrained optimization in MATLAB	146
3.3	Metho	ds for constrained optimization	148
	3.3.1	Penalty function approach	149
	3.3.2	Kuhn-Tucker conditions	154
	3.3.3	Duality theory	159
	3.3.4	Kelley's cutting plane algorithm	165
	3.3.5	Active set method	166
3.4	Linea	r programming	168
	3.4-1	Geometric and algebraic features of linear	
		programming	170
	3-4-2	Simplex method	172
	3-4-3	Duality in linear programming	174
	3-4-4	Interior point methods	176
	3-4-5	Linear programming in MATLAB	179
3.5	Branc	ch and bound methods for nonconvex	
	optim	ization	180
	3.5.1	LP-based branch and bound for MILP models	186
3.6	Heuri	stic methods for nonconvex optimization	189
3.7	L-shap	ped method for two-stage linear stochastic	
	progra	amming	194
S3.1	Eleme	ents of convex analysis	197
	53.1.1	Convexity in optimization	197
	53.1.2	Convex polyhedra and polytopes	201
	Refere	ences	204

<i>y</i> ^ <i>4</i>	Prin	ciples of	f Monte Carlo simulation	207
	4-1	Monte	Carlo integration	208
	4-2	Genera	nting pseudorandom variates	210
		4-2.1	Generating pseudorandom numbers	210
		4-2.2	Inverse transform method	212
		4-2.3	Acceptance-rejection method	213
		4.2.4	Generating normal variates by the polar	
			approach	215
	4-3	Setting	the number of replications	218
	4-4	Varian	ce reduction techniques	220
		4-4-1	Antithetic variates	220
		4-4-2	Common random numbers	224
		4-4-3	Control variates	226
		4-4-4	Variance reduction by conditioning	227
		4-4-5	Stratified sampling	227
		4-4-6	Importance sampling	229
	4-5	Quasi-	Monte Carlo simulation	234
			Generating Halton's low-discrepancy	
			sequences	235
		4-5.2	Generating Sobol's low-discrepancy	
			sequences	241
	4-6	Integra	nting simulation and optimization	246
		Referen	nces	249
5	Fini	te differe	ence methods for partial differential	
	equ	ations	5 F F 55 F	251
	5.1	Introdi	uction and classification of PDEs	252
	5.2	Numer	ical solution by finite difference methods	256
		5.2.1	Bad example of a finite difference scheme	257
		5.2.2	Instability in a finite difference scheme	259
	5.3	Explici	it and implicit methods for second-order	265
		PDES		203
		5.3.1	Solving the heat equation by an explicit method	266
		5.3.2	Solving the heat equation by an implicit method	270
		533	Solving the heat equation by the Crank-	_/0
		2.2.2	Nicolson method	274
	5.4	Conver	rgence, consistency, and stability	275

S5.1	Classification	of second-order PDEs and	
	characteristic	curves	211
	References		219

Part III Applications to Finance

6	Opti	mization models for portfolio management	283
	6.1	Mixed-integer programming models	285
	6.2	Multistage stochastic programming models	289
		6.2.1 Split-variable formulation	292
		6.2.2 Compact formulation	291
		6.2.3 Sample asset and liability management model formulation	301
		6.2.4 Scenario generation for multistage	202
	6.0	stochastic programming	303
	6.3	Fixed-mix model based on global optimization	309
		References	312
^ 7	Opti	on valuation by Monte Carlo simulation	315
	1.1	Simulating asset price dynamics	316
	1.2	Pricing a vanilla European option by Monte Carlo simulation	319
		1.2.1 Using antithetic variates to price a vanilla European option	321
		1.2.2 Using antithetic variates to price a European option with truncated payoff	322
		1.2.3 Using control variates to price a vanilla European option	323
		1.2.4 Using Halton low-discrepancy sequences	
		to price a vanilla European option	325
	1.3	Introduction to exotic and path-dependent options	326
		1.3.1 Barrier options	326
		1.3r2" Asian options	330
		1.3.3 Lookback options	331
	1.4	Pricing a down-and-out put	332
	:7.5	Pricing an Asian option	340
		References	345

8	Option valuation	by finite	difference methods	341
---	-------------------------	-----------	--------------------	-----

8.1	Applying finite difference methods to the Black- Scholes equation	347
8.2	<i>Pricing a vanilla European option by an explicit method</i>	350
	8.2.1 Financial interpretation of the instability of the explicit method	352
8.3	<i>Pricing a vanilla European option by a fully implicit method</i>	354
8.4	Pricing a barrier option by the Crank-Nicolson	
	method	357
8.5	Dealing with American options	358
	References	364

Part IV Appendices

Appendi	x A Introduction to MATLAB programming	367
A.l	MATLAB environment	367
A.2	MATLAB graphics	374
<i>A.3</i>	MATLAB programming	375
Appendi	ix B Refresher on probability theory	379
<i>B.1</i>	Sample space, events, and probability	379
<i>B.2</i>	Random variables, expectation, and variance	381
	B.2.1 Common continuous random variables	383
<i>B.3</i>	Jointly distributed random variables	386
<i>B.4</i>	Independence, covariance, and conditional	
	expectation	388
<i>B.5</i>	Parameter estimation	391
	References	395

Index

397