Sabine Kunst Tanja Kruse Andrea Burmester (Eds.)

Sustainable Water and Soil Management

With 62 Figures

Contents

List of	f Contributors	XIV
---------	----------------	-----

Gendersensitive, Participatory Approach of Water and Soil Management

1	The International Women's University - Framework for the Project Area Water	1
	Andrea Burmester. Tania Kruse	
	1.1 The Future of Higher Education (Aims)	1
	1.2 The International Women's University and Intercultural Science.	2
	1.3 Junior Women Scientists	2
	1.3.1 Selection Process in the Project Area Water	3
	1.3.2 Profile of the Junior Scientists in the Project Area Water	4
	1.3.3 Catering to Participants' Needs: Service Centre	5
	1.4 <i>ifu</i> as a Platform for Global Dialogue	6
2	<i>ifu</i> - an Intercultural Innovation in Higher Education ?	9
	Vathsala Aithal	
	2.1 The Intercultural <i>ifu</i>	9
	2.1.1 Internationalisation or Parochialisation?	10
	2.1.2 The Socio-Political Context	11
	2.1.3 The Feminist Agenda	
	2.1.4 Culture as Social Practice	14
	2.1.5 The Many Differences	15
	2.1.6 Intercultural Training at <i>ifu</i>	16
	2.1.7 The Interculturality of Knowledge Production	17
	2.2 Conclusion	17
	References	
3	The Project Area Water	
	Sabine Kunst, Andrea Burmester, Tanja Kruse	
	3.1 7 Water is Life -Background Information	21
	3.2 Feminist Perspectives at the Action Level	23
	3.3 The Concept of the Project Area Water	24
	3.4 Curriculum of the Project Area Water	26
	3.4-1 Knowledge Transfer	
	3.4.2 Practical Projects	
	References	28

Aspects of Water and Soil Management

4	Rural Deve	elopment with Special Emphasis on Women, Water and	20
	Environme	nt	
	Leelamma	Devasia	•
	4.1 Ai	Experiment in the Creation of Knowledge, Skills and Attitude	29
	4.2 Fe	minisation of Water Management - an Indian Concept	31
	4.2.1	India-the Land and People	31
	4.2.2	Rural Women's Participation in Water Management in	
		Maharashtra State	32
	4.2.3	An Alternative Vision Planned and Directed by Rural	
		Women	42
	4.3 Ar	1 Interdisciplinary and International Approach to Rural	
	De	velopment within <i>ifu</i>	44
	4.3.1	Women and Rural Development	44
	4.3.2	Rural Women - Water and the Environment	46
	4.3.3	Skill Development	48
	4.3.4	Exposure to Different Realities, Field Trips and Excursions.	51
	4.4 Th	e ifu Experiment as a Beginning of a New Endeavour	52
	Referenc	es	
5	Water Tre	atment and Rainwater Harvesting	57
	Namrata Pa	thak	
	5.1 0	/erview	
	5.2 W	ater Disinfection Methods	60
	5.2.1	Physical and Chemical Methods	60
	5.2.2	Biological Method	62
	5.2.3	Bacterial Contamination	63
	5.3 Ra	anwater Harvesting - Two Scenarios	64
	5.4 De	escription of the Project	66
	5.4.1	Presentation of Excursions	67
	5.4.2	Results	71
	5.5 Ra	inwater Harvesting Project Plan Developed by the Women	
	Ju	nior Scientists	76
	5.5.1	Rainwater Harvesting for Household Consumption	
		(Philippines by Angelica R. Martinez)	76
	5.5.2	Case Study on Rainwater Harvesting	
		(Albania by Gentiana Haxhillazi)	
	5.5.3	Rainwater Harvesting - A Proposal for Secondary Schools	
		(Tanzania by Eng. Immaculata Nshange Raphael)	80
	.5.5.4	Rainwater Harvesting (USA by Margaret Fredricks)	81
	5.5.5	Promotion of Rainwater Harvesting in the Arid Area	
		(Cameroon by Michele Denise Akamba Ava, Maroua Salak)	83

5.5.6	Rainwater Harvesting Draft Plan for a Vegetable Garden	0.4
	(India by Nandini Sankarampadi, Sanjulata Prasad)	84
5.5.7	Rainwater Harvesting Plan for Loyola College	
	(Nigeria by Theresa Odejayi, Yetunde Odeyemi,	0.0
5 6 9	Helen Oloyede)	80
5.6 Sur	nmary,.	88
Reference		89
Wastewater	· Treatment	91
Sabine Kuns	st, Artur Mennerich, Marc Wichern	
6.1 Me	chanical Wastewater Treatment	
6.1.1	Overview	
6.1.2	Rakes and Strainers	
6.1.3	Sand Catchers	94
6.1.4	Preliminary Treatment/Settling Tank	97
6.2 Bio	blogical Wastewater Treatment	100
6.2.1	Overview	100
6.2.2	Legal Requirements for Wastewater Treatment in Europe	101
6.3 Mo	odels for the Design and Simulation of Wastewater	
Tre	atment Plants (WWTPs)	112
6.3.1	Overview	
6.3.2	Dynamic Models	118
6.3.3	Use of Computer Programs	121
6.4 Ev	aluation of Centralised Wastewater Treatment	123
6.4.1	Comparison of Wastewater Treatment Plants	127
6.4.2	Conclusions	131
Reference	28	135
Decentralis	ed Wastewater Treatment - Wastewater Treatment in	127
Kurai Area	S	13/
T 1 Cit	er, Sabine Kullst	127
7.1 Sit	Dringinlas and Spheres of Action	137
7.1.1	Decentralisation and User Derticination	130
7.1.2	Decentralisation and User Participation.	
7.2 Na	ture-Based wastewater and Sludge Treatment Methods as	
Co	mponents of Sustainable Concepts in Rural Regions	1.41
•'- \	State of the Art	141
7.2.1	Introduction	141
7.2.2	Overview - Wastewater Quantities and Wastewater Agents	
	in Rural Areas	142
7.2.3	Pre-Treatment	144
7.2.4	Planted Soil Filters	146
7.2.5	Wastewater Lagoons	153
7.2.6	Sludge Composting in Reed Beds	156
7.2.7	Practical Examples	

	7.3 Conclusions for Design Parameters	164
	7.3.1 Characteristics of Decentralised Wastewater Treatment	
	Systems which are Conducive to Sustainable Development.	168
	7.3.2 Impact of Gender Perspectives on Planning Criteria	
	7.4 Examples of Planning Ideas	172
	7.4.1 Wastewater Purification for Remote Villages	173
	7.4.2 Planning Ideas for Sensitive Regions in Rural Areas	
	References	180
~		
8	Alternative Technologies for Sanitation, Recycling and Reuse	183
	Sabine Kunst, Namrata Pathak	102
	8.1 Overview.	185
	8.2 The Composting Process	186
	8.2.1 The Phases	186
	8.2.2 Environmental Factors in Composting	18/
	8.2.3 Composting Micro-Organisms	190
	8.2.4 Quality Criteria for Compost as a Product	193
	8.3 Types of Toilets	194
	8.3.1 Water Toilets	194
	8.3.2 Waterless Toilets	195
	8.4 Composting Toilet Systems	196
	8.4.1 Dimensioning Composting Toilets	196
	8.4.2 Dry Sanitation with Reuse	198
	8.4.3 Dehydration Toilets	201
	8.4.4 Decomposition Toilets	204
	8.4.5 Types of Composting Toilet Systems	207
	8.5 SIRDO	
	8.5.1 Pathogens Elimination	214
	8.5.2 Social Evaluation	
	References	
0	Diver Development Planning	210
,	Andrea Tonne	
	9.1 River Protection for the Balance of Nature	219
	0.2 Hydraulics and River Protection	
	9.2 Tryutautics and River Thoracteristics	<u>222</u> ววว
	0.2.2 River Discharge	222
	9.2.2 River Discharge	223
	9.2.5 The River Floteenon System of Lower Saxony/Germany	
	9.2.4 Witking all inventory in Situ.	231
	9.5 Standach Kiver Development Plan	230 רבר
	9.5.1 The Elbe Calchinent Area	
	7.5.2 The Stallbach Novelement Design (Design Madular)	239
	9.5.5 Kiver Stanibach Development Project (Project Modules)	
	9.5.4 Kesults	
	9.4 Summary	
	Kelerences	

10 Water and	Soil Towards Sustainable Land Use	
Brigitte Urba	an	
10.1 Ove	erview!	
10.1.1	Soils	
10.1.2	Soil and Water	
10.1.3	Global Significance	
10.2 Pro	ject Water and Soil	
10.2.1	Skills and Aims	
10.2.2	Stahlbach Creek Project	
10.2.3	Methodology	
10.3 Res	sults of The Project	
10.3.1	Case Study: River Elbe Ecology Project	
10.3.2	Description and Results of the Three Project Sites	
10.4 Sur	nmary	
10.4.1	Intergroup Interferences	
Reference	 S	

Conclusions

11 Evaluation "There is No Unanimous Judgement on ifu"	.295
Sigrid Metz-Gockel	
11.1 Evaluation Concept	. 295
11.2 Bridging the Gap Between Mutually Unfamiliar Disciplines and	
Socio-Technical Innovation	.297
11.2.1 Curriculum of the Project Area Water	.297
11.2.2 Evaluation of the Curriculum from the Perspective of the	
Junior Scientists	.298
11.2.3 From the Perspective of the Visiting Scholars: "You Can Fee	el
It in the Air"	.303
11.2.4 Description of the Study Venue - the Environment from the	
Perspective of the Junior scientists	.306
11.3 Incongruity of the Perspectives: A Summary	.307
References	308
12 Future Perspectives for Sustainable Water and Soil Management	309
Sabine Kunst	
12.1 Internationally and Intercultural Work	.310
12.2 Interdisciplinary Work and Gender Perspectives	.312
12.3 Women's International Network for Sustainability: A Post-;/?/	
Initiative Promoting Equitable and Ecologically Sound	
Alternatives to Mainstream Development	.315
Dolly Wittberger	
12.3.1 "Development is Well-Being-Concerning the Individual as	
well as the Community Level - for the Past, Present and	
Future." (Andrea Heckert, U.S./Mexico)	.315

12.3.2	"What Should I Say? Now We Are Developed?"	
	(Christobel Chakwana, Malawi)	.316
12.3.3	"I Would Like to Have a Computer, this Would Empower	
	Me." (Arig Bakhiet, Sudan)	.317
Reference	S	.317

Appendices

13	Manual	for Analysis of Soils and Related Materials	
	Brigitte U	Jrban	
	13.1	Introduction to Soil Exploration and Soil Sampling	
	13.2	Moisture Content and Dry Weight	322
	13.3	Determination of Organic Matter	
	13.4	Determination of pH	
	13.5	Salinity of Soils (Electric Conductivity, EC)	
	13.6.	Cress Test (Germinability of Lepidium sativum):	
	13.7	Determination of Total Amount of Micro-organisms in Solids	
		(Microbial Number).	329
	13.8	Soil Respiration, Biological Oxygen Demand (BOD)	334
	13.9	Respiration Activity of Compost	336
	13.10	Carbon Content	
	13.11	Determination of Nitrogen (Kjeldahl Procedure)	
	13.12	C/N and C/P Ratio	
	13.13	Determination of Carbonate	
	13.14	Determination of Plant-Available Phosphorus and Potassium	
	13.15	Determination of Plant-Available Potassium and Magnesium	
		(diluted with Calcium Chloride)	
	13.16	Determination of N-min (NO ₃ and NO ₂)	
	13.17	Determination of N-min (NH ₄)	
	13.18	Determining Exchangeable Cations at Soil pH	
	13.19	Nitrohydrochloric Acid Disintegration	356
	13.20	Sewage Sludge Regulations	357
	13.21	Elution with Water	
	13.22	Soil Moisture Retention Capacity, pF Value	. 359
	13.23	Soil Texture (Grain Size Distribution)	
	13.24	Grain Fractions and Texture Types	
	Refere	nces	
14	Influence	ing BOD and N Removal Assessment of Important	
	Paramet	ers	
	Sabine K	unst	
	14.1	Batch Tests as a Method for Classifying Nitrification and	
		Denitrification Activities in Activated Sludge	
	14.	1.1 Batch Tests for Nitrification (Aerobic)	
	14.	1.2 Batch Tests for Denitrification (Anoxic)	373

14.2 Resp	irometry: Determination of the Oxygen Uptake Rate (OUR)	375
14.2.1	Determination of the Respiration Rate of Activated Sludge	
	by Measuring the O2 Utilisation Rate	376
14.2.2	Evaluation of the Recorded Data	
14.2.3	Dependence of Oxygen Consumption on Toxic or Inhibiting	5
	Substances in Water	378
14.2.4	Further Applications for Oxygen-Consumption	
	Measurements	
Vitae of Contributors		
Index		