Principles of Econometrics

A Modem Approach Using EViews

Sankar Kumar Bhaumik

Lists of Tables, Figures, and Screenshots Preface

1. Scope and Methodology of Econometrics

- 1.1 What is Econometrics?/1
- 1.2 Brief History of Econometrics/3
- 1.3 Methodology of Econometrics/4

Hypothesis/5

Model Specification/5

Estimation/6

Verification or Inference/6

Forecasting and Policy Formulation/6

1.4 Necessary Assumptions for Estimation/7

Probability Distribution of YJ8

1.5 Data for Econometric Analysis/8

Cross-Sectional Data/8

Time Series Data/9

Panel Data/9

Experimental and Non-experimental Data/9

Sources of Data/10

1.6 About EViews Software Package/10

A Glimpse of the Main Window of EViews 8/12

1.7 Questions/12

2. The Simple Linear Regression Model

- 2.1 Definition/15
- 2.2 Specification and Assumptions/16
- 2.3 OLS Estimation/18
- 2.4 Properties of OLS Regression Line/20
- 2.5 Properties of Estimators/24

Small Sample Properties/24

Large Sample or Asymptotic Properties/25

2.6	Properties of OLS Estimators/26
	Unbiasedness of /?/27
	Linearity of >0/28
	Minimum Variance or Bestness for 3/28
2.7	Statistical Inference in SLRM/30
	Hypothesis Testing/31
	One-Tailed Test/33
	Confidence Intervals/34
	Thep-value Approach/34
2.8	Measuring Goodness of Fit/35
2.9	Analysis of Variance on OLS Regression/36
2.10	Some Relations in the Context of SLRM/37
	Relation between Regression Slope and Correlation Coefficient/37
	Relation between F-statistic and r ² /37
	Relation between F and $t^2/38$
	Relation between r ² and f-statistic/39
2.11	Regression without Intercept Term/39
	Hypothesis Testing/40
	Goodness of Fit/41
2.12	Reverse Regression/41
	An Important Result/42
2.13	Outliers/42
2.14	Estimation of SLRM Using EViews/43
	Presentation of Regression Results/44
	Interpretation of Regression Results/46
2.15	Questions and Assignments/46
The N	Aultiple Linear Regression Model
3.1	Definition/55
3.2	Specification and Assumptions/56
3.3	OLS Estimation/56
3.4	Properties of OLS Estimators/58
3.5	Measuring Goodness of Fit/58
3.6	Some Problems of Inference in MLRM/62
	Testing Significance of Individual Regression Coefficients/63
	Testing the Overall Significance of Regression/63
	Testing Relevance of an Additional Explanatory Variable/65
	Testing Validity of Linear Equality Restriction/66

Contents ix

3.7	The Likelihood Ratio, Wald, and Lagrange Multiplier Tests/68
3.8	Implications of Some Frequently Observed Cases in MLRM/70
3.9	Multiple Regression Exercises Using EViews/70
	Steps in EViews/71
	Omitted Variable Test /73
	Redundant Variable Test /74
	The Wald Test of Coefficient Restrictions 111
3.10	Questions and Assignments/77
Apper	ndix 3.1: The General Linear Model/82
	BLUE Properties/86
Appe	ndix 3.2: Maximum Likelihood Estimation Method/89
Hetei	roskedasticity 92
4.1	Definition/92
	Sources of Heteroskedasticity/93
4.2	Consequences of Heteroskedasticity/95
	Unbiasedness/96
	Bestness/96
	Consistency/97
4.3	Detection of Heteroskedasticity/98
	Graphical Approach/98
	Algebraic Tests/99
	Breusch-Pagan-Godfrey Test/99
	Glejser Test/100
	Goldfeld-Quandt Test/100
	Whites Test/101
4.4	Remedial Measures/102
	Measures Based on a Specific Idea about the Form
	of Heteroskedasticity/102
	Generalized Least Squares/102
	Weighted Least Squares/104
	Heteroskedasticity-Consistent Estimator/105
	General Measures/105
4.5	Applications Using EViews/106
	Tests of Heteroskedasticity/106
	Estimation of White's Heteroskedasticity-Consistent Standard Errors/110
	Weighted Least Squares Estimation/111

4.

X Contents

Questions and Assignments/112

Appendix 4.1:Effect of Heteroskedasticity on the Variance-Covariance Matrix of Disturbance Term of the General Linear Model/117

4.6

5.	Auto	correlation	119
	5.1	Definition/119	
		Sources of Autocorrelation/120	
	5.2	Specification of Autocorrelation Relationship/120	
	5.3	Consequences of Autocorrelation/123	
		Unbiasedness/124	
		Bestness/125	
		Consistency/125	
	5.4	Tests for Autocorrelation/126	
		Graphical Approach/126	
		Durbin-Watson (1951) Test/127	
		Theil-Nagar Correction to Durbin-Watson cf-statistic/129	
		Durbin's (1970) fo-test/129	
		Breusch-Godfrey Lagrange Multiplier Test/130	
	5.5	Remedial Measures /131	
		When the Value of p Is Known/131	
		When the Value of p Is Unknown/132	
		Cochrane-Orcutt Iterative Procedure/132	
		Hildreth-Lu Search Procedure/133	
		Heteroskedasticity and Autocorrelation Consistent (HAC)	
		Standard Errors/133	
	5.6	Applications Using EViews/134	
		The Durbin-Watson Test/134	
		The Breusch-Godfrey (BG) Test/134	
		Estimation of Model Using the Iterative Method/135	
		OLS Regression with HAC Standard Errors/138	
	5.7	Questions and Assignments/138	
	Appe	ndix 5.1: Effect of Autocorrelation on the Variance-Covariance	
		Matrix of Disturbance Term of the General Linear Model/142	
6.	Mult	icollinearity	144
	6.1	Definition/144	
		Sources of Multicollinearity/145	

6.2 Consequences of Multicollinearity/145

Case I: Absence of Multicollinearity ($r_2^* = 0$)/147

Case II: Perfect Multicollinearity $(r^*_2 - 1)/147$

Case III: Imperfect Multicollinearity $(r^*_2 < 1)/148$

6.3 Tests for Multicollinearity/149

Correlation Analysis/149

Kleins Rule of Thumb/150

Variance-Inflation Factor (VIF)/150

Tolerance (TOL)/151

Condition Number (CN)/152

6.4 Remedial Measures/153

Increasing Sample Size/153

Transformation of Variables/153

Using Extraneous Estimate/153

Dropping Variables/153

Other Methods/156

6.5 Multicollinearity Tests Using EViews/156

Correlation Matrix/157

Computation of VIFs/159

Coefficient Variance Decomposition/159

An Illustration Using Indian Data/160

6.6 Questions and Assignments/163

Dummy Variables

- 7.1 Definition/167
- 7.2 Simple Regression Model with Dummy Variable/167

Dummy Variables for Multiple Categories/168

Important Points to Remember/169

- 7.3 Interaction Dummy/170
- 7.4 Comparing Two Regressions/171

Illustrative Examples/176

The Chow Test in EViews/183

7.5 Models with Dummy Dependent Variable/184

Linear Probability Model (LPM)/185

Logit Model/188

Probit Model/192

Comparison between Logit and Probit Models/193

The Problem of Disproportionate Sampling/194

7.6	Measuring Goodness of Fit/194
	Effrons $R^2/195$
	McFadden's Pseudo-R ² /195
7.7	Examining the Overall Significance of Regression/196
7.8	Estimation of Logit and Probit Models Using EViews/196
	Steps/196
	An Illustration/197
	Computation of Marginal Effects/198
7.9	Questions and Assignments/200
Disti	ributed LagModels
8.1	Definition and Specification/207
8.2	Geometric Lag Approach/208
8.3	Estimation of Geometric Lag Model: The Koyck Method/208
	Advantages of the Koyck Method/209
	Problems of the Koyck Method/209
	Median and Mean Lags in Koyck Model/211
	Short-Run and Long-Run Multipliers/212
8.4	Adaptive Expectations Model/212
	Estimation of AEM/213
	The Other Problem of AEM/214
8.5	Partial Adjustment Model/215
8.6	Almon's Polynomial Lag Model/216
	Merits and Demerits of the Almon Approach/219
8.7	Applications Using EViews/219
	Estimation of the Koyck Model/219
	Interpretation of Results of the Koyck Model/220
	Estimation of Partial Adjustment Model/222
	Interpretation of Results of Partial Adjustment Model/224
8.8	Questions and Assignments/225
Pane	el Data Regression Models
9.1	Definition and Usefulness/228
	Types of Panel Data/229
	Usefulness of Panel Data/229
9.2	Panel Data Models/232
	The Constant Coefficients Model (CCM)/232
	The Fixed-Effects Model/233

The Random Effects Model/238

9.3	Choosing between FEM and REM: The Hausman Test/240
9.4	Estimation of Panel Regression Models Using EViews/241
	Organizing Data/241

Importing Data from Excel Worksheet/241

Resetting the Workfile Structure/241

Estimating Panel Regression Models/241

Obtaining Series for Fixed/Random Effects/245

Choosing between OLS Model and Fixed Effects Model:

Fixed Effects Testing/245

Estimating Random Effects Model/245

Choosing between Fixed Effects Model and Random

Effects Model/245

- 9.5 Interpretation of Panel Regression Results/245
- 9.6 Questions and Assignments/249

10. Time Series Econometrics

- 10.1 Background/258
- 10.2 Some Important Concepts/259

Stochastic Process/259

Stationary Stochastic Process/259

Purely Random or White Noise Stochastic Process/261

Non-stationary Stochastic Process or Random Walk/261

Random Walkwithout Drift/261

Random Walkwith Drift/262

Unit Root Stochastic Process/263

10.3 Tests for Stationarity/264

Graphical Approach/264

Autocorrelation Function (ACE) and Correlogram/264

Unit Root Test/265

Dickey-Fuller (1979) Test/266

Augmented Dickey-Fuller (ADF) Test/267

Phillips-Perron (PP) Test/268

Sources of Non-stationarity/270

Limitations of Unit Root Test/272

10.4 Spurious Regression Problem/272

How to Avoid Spurious Regression Problem?/272

xiv Contents

Cointegration and Error Correction Mechanism/273 10.5 Engle-Granger (EG) Cointegration Test/274 Error Correction Mechanism (ECM)/275 106 ARIMA Forecasting/276 AR, MA, and ARMA Modelling of Time Series Data/277 The Box-Jenkins (Bi) Methodology/280 Steps in BJ Methodology/282 Merit and Demerit of the BJ Methodology/283 10.7 Vector Autoregressive (VAR) Model/283 Specification of the VAR Model/284 Estimation of the VAR Model/284 Forecasting with VAR/285 Vector Error Correction Model/285 Impulse Response Analysis/286 Variance Decomposition/286 Merits and Demerits of VAR/287 10.8 Causality Tests/288 Granger Causality Test/288 Sims Causality Test/290 Granger Causality in VAR/290 109 ARCH/GARCH for Modelling Volatility/291 The ARCH Model/292 The GARCH Model/293 10.10 Applications Using EViews/294 Stationarity Tests/294 Estimation of Cointegrating Regression and the ECM/299 ARIMA (BJ) Forecasting/302 Evaluation of Forecasts/308 Estimation of VAR Model/310 Testing Granger Causality in VAR Model/313 Usefulness of Estimated VAR Model/314 Forecasting with VAR Model/320 Testing of ARCH Effect/321 Graphical Presentation of Volatility Clustering/321 Estimation of ARCH Model/329 Estimation of GARCH Model/331 10.11 Questions and Assignments/332

11. Simultaneous Equations System		338
11.1	Single Equation versus Simultaneous Equations System/338	
	Features of Simultaneous Equations System/338	
	An Example of Simultaneous Equations System (SES)/339	
	Simultaneous versus Recursive Systems/339	
11.2	OLS Estimation of SES: Consequence of Ignoring Simultaneity/340	
11.3	Structural and Reduced Form Equations/341	
11.4	Identification Problem/343	
	Rules of Identification/346	
	An Application of Rules of Identification/348	
11.5	Estimation of Simultaneous Equations System/349	
	Indirect Least Squares (ILS)/350	
	Two-Stage Least Squares (2SLS)/352	
11.6	Application of 2SLS Using EViews/353	
	Interpretation of Results/356	
11.7	Questions and Assignments/358	
Apper	ndix 11.1: Algebraic Derivation of Rules of Identification/363	
General A	General Appendix: Review of Some Statistical Concepts	
Statistical	Statistical Tables	
References		394
Index		399
About the Author		412